Copyright
©The Author(s) 2025.
World J Gastroenterol. Sep 14, 2025; 31(34): 108807
Published online Sep 14, 2025. doi: 10.3748/wjg.v31.i34.108807
Published online Sep 14, 2025. doi: 10.3748/wjg.v31.i34.108807
Figure 1 Imaging features of congestive liver.
A: Ascites and slightly blunted liver edges in severe cases (orange arrow); B: Enlargement of the hepatic veins and Right and Left lobe enlargement (orange bidirectional arrow); C: Images at the paraumbilical vein, dilation of the paraumbilical vein, a component of the portal venous system, is observed (orange arrow).
Figure 2 Transthoracic echocardiographic images demonstrating three grades of tricuspid regurgitation severity using color Doppler flow mapping.
A: Mild tricuspid regurgitation (TR): A narrow, faint regurgitant jet confined to the tricuspid valve plane; B: Moderate TR: A more prominent jet extending into the right atrium but not reaching the posterior wall; C: Severe TR: A broad, dense jet filling more than half of the right atrium with systolic flow reversal in the hepatic veins. TR: Tricuspid regurgitation.
Figure 3 Convolutional neural network (RandomShift) - applies random shifts to the image.
RandomFlip: Performs random flipping along specified axes. MulScalar & AddScalar: Normalization steps for pixel values. Convolution: Multiple convolution layers. BatchNormalization: Normalizes activations between layers. RepeatStart & RepeatEnd: Suggests looped operations, likely for iterative feature extraction.
Figure 4
Numbers on the Y-label are assigned to Y'0, Y'1, and Y'2 for the tricuspid regurgitation group.
Figure 5 Representative cases of congestive liver associated with varying severity of tricuspid regurgitation.
A: Mild tricuspid regurgitation (TR); B: Moderate TR; C: Severe TR.
- Citation: Miida S, Kamimura H, Fujiki S, Kobayashi T, Endo S, Maruyama H, Yoshida T, Watanabe Y, Kimura N, Abe H, Sakamaki A, Yokoo T, Tsukada M, Numano F, Kashimura T, Inomata T, Fuzawa Y, Hirata T, Horii Y, Ishikawa H, Nonaka H, Kamimura K, Terai S. Image analysis of cardiac hepatopathy secondary to heart failure: Machine learning vs gastroenterologists and radiologists. World J Gastroenterol 2025; 31(34): 108807
- URL: https://www.wjgnet.com/1007-9327/full/v31/i34/108807.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i34.108807