Published online Oct 21, 2015. doi: 10.3748/wjg.v21.i39.11127
Peer-review started: May 20, 2015
First decision: June 19, 2015
Revised: July 8, 2015
Accepted: August 30, 2015
Article in press: August 30, 2015
Published online: October 21, 2015
Processing time: 153 Days and 14.3 Hours
AIM: To elucidate the role of fibulin-5 (FBLN-5) as a suppressor of hepatocellular carcinoma (HCC) cell metastasis via integrin.
METHODS: The expression of FBLN-5 was determined by immunohistochemistry in 140 HCC samples and matched normal tissues, and was further confirmed by RT-PCR and Western blot analyses in various cell lines. Recombinant FBLN-5 was expressed in Escherichia coli BL21(DE3), purified and used in cell attachment assays. Expression of a specific plasmid or a specific siRNA in HCC cells resulted in the overexpression or knockdown of FBLN-5, respectively. Further, the migration and invasion of HCC cells were investigated using the Boyden chamber and transwell assays. The concentration of secreted matrix metalloproteinase 7 (MMP-7) was determined using ELISA.
RESULTS: FBLN-5 expression was found to be downregulated in HCC. Its expression was significantly correlated with advanced tumor metastasis; this was indicative of poor 5-year overall survival. Recombinant full-length human FBLN-5 promoted the attachment of HCC cells via integrins: it inhibited HCC cell adhesion and migration to fibronectin in a concentration-dependent manner. It also inhibited HCC cell migration and invasion through an integrin-binding arginine-glycine-aspartic acid (RGD) motif by downregulating MMP-7.
CONCLUSION: These results suggest that lower FBLN-5 expression is an important indicator of poor survival and that FBLN-5 inhibits HCC motility via an integrin-dependent mechanism. RGD-dependent suppression of MMP-7 by FBLN-5 might contribute to the development of new therapeutic strategies for HCC.
Core tip: Fibulin-5 (FBLN-5) is a matricellular protein that contains an arginine-glycine-aspartic acid motif, the role of which is to bind certain integrins and thereby mediate cancer cell motility. Several studies have revealed that FBLN-5 may promote or suppress tumor progression through its interaction with integrins in various human tumors in a context-specific manner, which might be a crucial event in the invasiveness of malignant tumor cells.