Editorial
Copyright ©The Author(s) 2020.
Artif Intell Med Imaging. Sep 28, 2020; 1(3): 87-93
Published online Sep 28, 2020. doi: 10.35711/aimi.v1.i3.87
Table 1 Most commonly adopted alghoritms in supervised machine learning
ML technique
ML alghoritms
Description
Linear(1) Linear regression; and (2) Logistic regressionLinear methods are used to modelling the relationship between the dependent variable and one or more independent variables
Nonlinear(1) Naive Bayes; (2) Decision tree; (3) k-Nearest Neighbors; (4) Support vector machines; and (5) Neural networkNonlinear approaches are used to produce predictive insights depending on nonlinear relationships in experimental data
Ensemble(1) Random forest; (2) Bootstrap aggregation; and (3) Stacked generalizationEnsemble techniques stack multiple models in order to improve prediction robustness and provide more accurate predictions than any individual model
Table 2 Possible clinical applications of artificial intelligence in oncological imaging
Clinical application
Oncologic field
Imaging modality
AI technique
Clinical-radiological workflowBreast cancer[9]MammographyML
Image acquisition[10,11]CT, MRIDL
Cancer detectionBreast cancer[12,13]MammographyDL
Lung cancer[14]X-Ray, CTDL
Tumor segmentationBreast Cancer[17,18]MRIDL
Tumor characterizationAdrenal cancer[20]MRIML
Renal cancer[21]MRIML
Lung cancer[22]CTML
Tumor stagingHead and neck cancer[23] CTML
Endometrial cancer[24]MRIML
Treatment monitoringBreast cancer [26]MRIML