Copyright
©The Author(s) 2021.
World J Clin Cases. Dec 26, 2021; 9(36): 11255-11264
Published online Dec 26, 2021. doi: 10.12998/wjcc.v9.i36.11255
Published online Dec 26, 2021. doi: 10.12998/wjcc.v9.i36.11255
Variables | Training set | Test set | P value |
Patient population, n | 1715 | 735 | |
Age (yr) | 55 (45-65) | 54 (44-66) | 0.323 |
Male, n (%) | 1390 (81.0) | 602 (81.9) | 0.307 |
BMI (kg/m2) | 24.6 (17.1-29.8) | 24.9 (17.3-28.9) | 0.956 |
Tumor size (cm) | 4.5 (0.9-7.8) | 4.8 (0.8-8.3) | 0.283 |
AFP | 8301 (489-35203) | 8842 (503-43203) | 0.058 |
WBC (× 103/µL) | 7.3 (3.5-13.8) | 7.5 (3.3-15.8) | 0.128 |
Hemoglobin (mg/dL) | 13.0 (10.8-15.6) | 12.7 (10.5-16.5) | 0.460 |
PLT (× 103/µL) | 168 (102-245) | 175 (113-260) | 0.156 |
Creatinine (mg/dL) | 0.92 (0.71-1.16) | 0.90 (0.70-1.15) | 0.128 |
ALB (g/dL) | 3.8 (3.3-4.4) | 3.7 (3.2-4.3) | 0.603 |
AST (IU/L) | 36.1 (6.3-163.5) | 42.4 (5.8-173.4) | 0.096 |
Diabetes mellitus, n (%) | 109 (6.4) | 81 (11.0) | 0.098 |
Dyslipidemia, n (%) | 395 (23.0) | 191 (26.0) | 0.063 |
ALT (IU/L) | 39.8 (8.3-178.5) | 42.3 (6.5-169.8) | 0.132 |
Glucose (mg/dL) | 11.8 (5.8-18.3) | 12.5 (6.3-19.8) | 0.285 |
Cholesterol (mg/dL) | 162.2 (135.8-198.3) | 168.0 (130.0-198.3) | 0.323 |
PRBC (units) | 0.5 (0.0-3.0) | 0.8 (0.0-3.0) | 0.112 |
Crystalloid (mL) | 2318.8 (1500-3500) | 2218 (1500-4000) | 0.994 |
Surgery time (min) | 278 (198-363) | 285 (202-387) | 0.856 |
Beta blockers, n (%) | 257 (15.0) | 67 (9.1) | 0.155 |
Aspirin, n (%) | 152 (8.9) | 46 (6.3) | 0.183 |
RAAS blocker, n (%) | 91 (5.3) | 61 (8.3) | 0.360 |
Insulin, n (%) | 48 (2.8) | 44 (6.0) | 0.059 |
Systolic blood pressure | 113 (88-154.8) | 118 (95-165.5) | 0.658 |
Diastolic blood pressure | 75 (55-84) | 77 (58-89) | 0.537 |
Mean arterial pressure | 93 (71-119) | 108 (68-121) | 0.437 |
Machine learning models | Concordance-index | Brier score | AUC |
Logistic regression | 0.84 | 0.078 | 0.85 |
Support vector machine | 0.86 | 0.083 | 0.90 |
Random forest | 0.86 | 0.076 | 0.92 |
Extreme gradient boosting | 0.80 | 0.083 | 0.87 |
Decision tree | 0.83 | 0.085 | 0.90 |
- Citation: Dong JF, Xue Q, Chen T, Zhao YY, Fu H, Guo WY, Ji JS. Machine learning approach to predict acute kidney injury after liver surgery. World J Clin Cases 2021; 9(36): 11255-11264
- URL: https://www.wjgnet.com/2307-8960/full/v9/i36/11255.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v9.i36.11255