Copyright
©The Author(s) 2023.
World J Clin Cases. Nov 6, 2023; 11(31): 7530-7542
Published online Nov 6, 2023. doi: 10.12998/wjcc.v11.i31.7530
Published online Nov 6, 2023. doi: 10.12998/wjcc.v11.i31.7530
Resistance mechanism | Molecule/process involved | Resistance to antibiotic | Primary host | Genome-encoded | Plasmid-encoded |
Decrease in bacterial wall permeability | Reduced porin expression | Different antibiotics | Gram-negative bacteria | oprD gene | No |
Increase in efflux | Tripartite RND pump family | Different antibiotics | Gram-negative bacteria | Yes | Yes |
Antibiotic inactivation by chemical group transfer | Modification | Aminoglycosides | Gram-negative and Gram-positive bacteria | Yes | Yes |
Oxidation | Tetracyclines | Many bacteria | Tet(X) genes | Yes | |
Antibiotic hydrolysis | AmpC beta-lactamases | Broad-spectrum beta-lactams | Gram-negative bacteria: Enterobacteriaceae | Yes | Yes |
Carbapenemases | A variety of beta-lactams | Enterobacteriaceae | Yes | Yes | |
Modification of antibiotic target | Modification of peptidoglycan precursors | Glycopeptides: vancomycin | Gram-positive cocci: Enterococcaceae | vanC, vanD operons | vanA gene claster |
Alteration of LPS | Polymyxins: colistin | Gram-negative: Enterobacteriaceae | Yes | Yes | |
Exchange of conventional PBP to PBP2a | Beta-lactams | Staphylococcaceae | mecA gene | Yes |
Metabolic process | Molecule/reaction involved | Resistance to antibiotic | Host | Genome encoded | Plasmid encoded |
Decrease in bacterial wall permeability | Modified porins | Many antibiotics | Gram-negative bacteria | Loss or mutated oprD mutations in porin operon | |
Increase in efflux | RND pump family | Many antibiotics | Gram-negative bacteria; S. aureus | Mutations in mtr region, mexEF-oprN | RND with NDM-1 |
Efflux pump | Fluoroquinolones | S. aureus | Amplification of norA gene | ||
Enzymatic antibiotic inactivation | Oxidation | Tetracyclines | Many bacteria | Mobile Tet(X) | |
Antibiotic hydrolysis | ESBLs | Broad-spectrum beta-lactams | Gram-negative bacteria | Yes | Yes |
Modification of antibiotic target | RNA polymerase RpoB | Rifampicin | S. aureus | Mutated RpoB gene | |
DNA gyrase GyrA and topoisomerase IV ParC | Quinolones Fluoroquinolones | S. aureus; K. pneumoniae | QRDR | Yes | |
DHPS and DHFR | Trimethoprim–sulfamethoxazole | Gram-negative bacteria | Mutated dfrA gene | Yes | |
Altered rRNA | Macrolides: erythromycin, Oxazolidinones: linezolid | Staphylococcus spp.; Streptococcus spp. | Mutated rRNA operon | Yes | |
Modification of peptidoglycan precursors | Vancomycin | Enterococcaceae, Staphyloccaceae | Mutated van genes, vanR/van S controls | Yes | |
Enoyl-ACP reductase | Triclosan | P. aeruginosa | Alternative fabV gene | ||
Addition of moieties to LPS | Colistin | Enterobacter spp. | Mutated TSC genes | mcr | |
Transpeptidase moiety of PBP | Methicillin and other beta-lactams | Staphylococcus spp. | mecA gene | SCCmec | |
Dihydropteroate synthase | Sulphonamides | Mutated sul1/2 gene |
- Citation: Liakina V. Antibiotic resistance in patients with liver cirrhosis: Prevalence and current approach to tackle. World J Clin Cases 2023; 11(31): 7530-7542
- URL: https://www.wjgnet.com/2307-8960/full/v11/i31/7530.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v11.i31.7530