Published online Mar 25, 2024. doi: 10.5501/wjv.v13.i1.87881
Peer-review started: August 31, 2023
First decision: October 24, 2023
Revised: November 7, 2023
Accepted: December 25, 2023
Article in press: December 25, 2023
Published online: March 25, 2024
Processing time: 193 Days and 2.3 Hours
The worldwide case fatality rate (CFR) of coronavirus disease 2019 (COVID-19) has been estimated to be around 1.5% as of now. Different variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have been discovered to cause the disease. The clinical presentation of the disease ranges from asymptomatic status to upper respiratory tract symptoms, mild pneumonia, severe respiratory symptoms, acute respiratory distress syndrome, extrapulmonary manifestations, and death. Various risk factors for COVID-19 mortality including age, male gender, comorbidities (such as chronic kidney disease, cardiovascular disease, chronic obstructive pulmonary disease), diabetes mellitus, malignancy, underlying autoimmune disease, and hypertension), ethnicity, vaccination status, smoking history, obesity, and socioeconomic status. On the other hand, some factors have been proven to be protective, which may reduce the severity or mortality of COVID-19 infection, as among which vaccination, efficiently staffed facilities, particularly by registered nurses corticosteroid treatment, and healthy diet are the most notable. Gathering updated information from international data sources could throw light on the protective or potential risk factors to avoid COVID’s severe morbidities and mortality.
We find it interesting the topic trend analysis in the COVID-19 literature, and the success of modeling studies in the field of predicting disease behavior was a turning point for us.
The objective motivation for doing this study is to assess the correlation between different known risk factors or protective measures and the COVID-19 case fatality rate and we decided to design and conduct a new study based on modeling.
Twenty-one potential risk factors were identified for COVID-19 case fatality rate for all the countries with available data. Univariate relationships of each variable with case fatality rate, and all independent variables to identify candidate variables for our final multiple model were examined. Finally multiple regression analysis technique was used to assess the strength of relationship between case fatality rate and several predictors’ variables as well as the importance of each predictor to the relationship.
There was a statistically significant inverse correlation between health expenditure, and number of computed tomography scanners per 1 million with case fatality rate, and a significant direct correlation was found between literacy, and air pollution with case fatality rate, this final model can predict approximately 97% of the changes in case fatality rate, conclusion: The current study recommends some new predictors explaining affect mortality rate. Thus, it could help decision-makers develop health policies to fight COVID-19.
I suggest to do the same study with the updated data and compare the results. Multiple regression analysis technique is used as the most wrong and reliable method.
Considering that global vaccination has been carried out, it is suggested that the approach of future realizations is to investigate the effectiveness of vaccines and compare the performance of vaccines with each other.