Copyright
©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Psychiatry. Mar 19, 2022; 12(3): 410-424
Published online Mar 19, 2022. doi: 10.5498/wjp.v12.i3.410
Published online Mar 19, 2022. doi: 10.5498/wjp.v12.i3.410
Magnesium-L-threonate exhibited a neuroprotective effect against oxidative stress damage in HT22 cells and Alzheimer’s disease mouse model
Ying Xiong, Ying-Ren Mai, Qun Yu, Zhi-Yu Cao, Jun Liu, Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
Yu-Ting Ruan, Department of Rehabilitation Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
Jing Zhao, Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
Yu-Wen Yang, Li-Ping Chen, Department of Medical Ultrasound, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
Fei-Fei Liu, Department of Medical Ultrasound, Xiang’an Hospital of Xiamen University, Xiamen 361000, Fujian Province, China
Wang Liao, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
Author contributions: Xiong Y and Ruan YT contributed to designing this study, collecting samples, carrying out experiments and writing the manuscript; Zhao J, Yang YW, Chen LP and Mai YR contributed to collecting samples and revising the manuscript; Yu Q, Cao ZY, Liu FF and Liao W contributed to analyzing the data and revising the manuscript; Liu J had full access to all of the data in the study, and took responsibility for the integrity of the data and the accuracy of the data analysis; all authors have approved the final article.
Supported by National Natural Science Foundation of China , No. 81870836 ; Natural Science Foundation of Guangdong Province, China , No. 2020A1515010210 ; Science and Technology Program of Guangzhou , China, No. 202007030010 ; and Guangdong Basic and Applied Basic Research Foundation , China, No. 2020A1515110317 and No. 2021A1515010705 .
Institutional animal care and use committee statement: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC), Sun Yat-sen University (Approval No. SYSU-IACUC-2019-000005).
Conflict-of-interest statement: All authors declare no conflicts of interest.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Jun Liu, MD, Professor, Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou 510120, Guangdong Province, China. liujun6@mail.sysu.edu.cn
Received: October 11, 2021
Peer-review started: October 11, 2021
First decision: November 17, 2021
Revised: December 15, 2021
Accepted: March 6, 2022
Article in press: March 6, 2022
Published online: March 19, 2022
Processing time: 158 Days and 1.8 Hours
Peer-review started: October 11, 2021
First decision: November 17, 2021
Revised: December 15, 2021
Accepted: March 6, 2022
Article in press: March 6, 2022
Published online: March 19, 2022
Processing time: 158 Days and 1.8 Hours
Core Tip
Core Tip: The dysfunction of oxidative stress is considered to stimulate the production of reactive oxygen species and induce hippocampal neuron damage which are the significant hallmarks of neurodegenerative diseases such as Alzheimer’s disease. Recent studies have explored the in vitro anti-malondialdehyde effect of magnesium. However, the potential neuroprotective effect of Magnesium-L-threonate (MgT) against oxidative stress remains to be explored. Our study demonstrated that MgT exhibited neuroprotective effects on suppressing oxidative stress and hippocampal neuronal apoptosis in vitro and in vivo, suggesting the promising therapeutic potential of MgT in oxidative stress-associated neurodegenerative disorders.