Published online Nov 4, 2016. doi: 10.5492/wjccm.v5.i4.235
Peer-review started: March 30, 2016
First decision: May 13, 2016
Revised: September 20, 2016
Accepted: October 5, 2016
Article in press: October 9, 2016
Published online: November 4, 2016
Processing time: 220 Days and 22.2 Hours
To outline the physiochemical properties and specific clinical uses of Plasma-Lyte 148 as choice of solution for fluid intervention in critical illness, surgery and perioperative medicine.
We performed an electronic literature search from Medline and PubMed (via Ovid), anesthesia and pharmacology textbooks, and online sources including studies that compared Plasma-Lyte 148 to other crystalloid solutions. The following keywords were used: “surgery”, “anaesthesia”, “anesthesia”, “anesthesiology”, “anaesthesiology”, “fluids”, “fluid therapy”, “crystalloid”, “saline”, “plasma-Lyte”, “plasmalyte”, “hartmann’s”, “ringers”“acetate”, “gluconate”, “malate”, “lactate”. All relevant articles were accessed in full. We summarized the data and reported the data in tables and text.
We retrieved 104 articles relevant to the choice of Plasma-Lyte 148 for fluid intervention in critical illness, surgery and perioperative medicine. We analyzed the data and reported the results in tables and text.
Plasma-Lyte 148 is an isotonic, buffered intravenous crystalloid solution with a physiochemical composition that closely reflects human plasma. Emerging data supports the use of buffered crystalloid solutions in preference to saline in improving physicochemical outcomes. Further large randomized controlled trials assessing the comparative effectiveness of Plasma-Lyte 148 and other crystalloid solutions in measuring clinically important outcomes such as morbidity and mortality are needed.
Core tip: Plasma-Lyte 148 is an isotonic, buffered intravenous crystalloid solution with a physiochemical composition that closely reflects human plasma. It is physiologically different to the commonly available crystalloids solutions such as Hartmann’s solution and sodium chloride (0.9%). Before using any crystalloid solution as fluid therapy, clinicians should have a fundamental understanding of each fluids specific physiological properties.
