Retrospective Cohort Study
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Orthop. Apr 18, 2024; 15(4): 321-336
Published online Apr 18, 2024. doi: 10.5312/wjo.v15.i4.321
Investigation of contact behavior on a model of the dual-mobility artificial hip joint for Asians in different inner liner thicknesses
Taufiq Hidayat, Muhammad Imam Ammarullah, Rifky Ismail, Eko Saputra, M Danny Pratama Lamura, Chethan K N, Athanasius Priharyoto Bayuseno, J Jamari
Taufiq Hidayat, Department of Mechanical Engineering, Universitas Muria Kudus, Kudus 59352, Central Java, Indonesia
Taufiq Hidayat, Muhammad Imam Ammarullah, Rifky Ismail, M Danny Pratama Lamura, Athanasius Priharyoto Bayuseno, J Jamari, Department of Mechanical Engineering, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
Muhammad Imam Ammarullah, M Danny Pratama Lamura, J Jamari, Undip Biomechanics Engineering & Research Centre, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
Rifky Ismail, Center for Biomechanics Biomaterials Biomechatronics and Biosignal Processing, Universitas Diponegoro, Semarang 50275, Central Java, Indonesia
Eko Saputra, Department of Mechanical Engineering, Politeknik Negeri Semarang, Semarang 50275, Central Java, Indonesia
Chethan K N, Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
Author contributions: Ammarullah MI and Hidayat T contributed to onceptualization; Saputra E and KN C contributed to methodology; Hidayat T contributed to software, investigation, data curation, writing—original draft preparation; Ismail R contributed to validation; Hidayat T and Lamura MDP contributed to formal analysis ; Ammarullah MI contributed to resources, funding acquisition; Ammarullah MI, Ismail R, KN C, Bayuseno AP, and Jamari J contributed to writing—review and editing; Saputra E contributed to visualization; Bayuseno AP and Jamari J contributed to supervision; Ammarullah MI and Lamura MDP contributed to project administration; All authors have read and agreed to the published version of the manuscript.
Supported by World Class Research Universitas Diponegoro, No. 118-23/UN7.6.1/PP/2021; and Penelitian Fundamental – Reguler, No. 449A-32/UN7.D2/PP/VI/2023.
Institutional review board statement: This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent statement: This article does not contain any studies with human participants or animals performed by any of the authors.
Conflict-of-interest statement: All authors have no conflicts of interest to disclose.
Data sharing statement: The data presented in this study are available on request from the corresponding author.
STROBE statement: The authors have read the STROBE Statement – checklist of items, and the manuscript was prepared and revised according to the STROBE Statement – checklist of items.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Muhammad Imam Ammarullah, Lecturer, Department of Mechanical Engineering, Universitas Diponegoro, Street Prof. Soedarto Number 13, Semarang 50275, Central Java, Indonesia. imamammarullah@gmail.com
Received: December 30, 2023
Peer-review started: December 30, 2023
First decision: January 16, 2024
Revised: January 28, 2024
Accepted: March 25, 2024
Article in press: March 25, 2024
Published online: April 18, 2024
Processing time: 107 Days and 17.5 Hours
Core Tip

Core Tip: The dual mobility hip system has the potential to be a great big bearing articulation if its technology is combined with highly cross-linked polyethylene. The modern artificial hip joint design has two free articulations between four parts: the femoral head, the inner liner, the outer liner as a metal cover to reduce wear, and the acetabular cup. Several studies show that prosthetic implant wear might be predicted partly by computing contact pressure distribution and contact area during everyday activities. A more reliable method of distinguishing between ideal and reality models may be incorporating activities with severe loading and boundary conditions.