Review
Copyright ©The Author(s) 2020.
World J Clin Oncol. Oct 24, 2020; 11(10): 809-835
Published online Oct 24, 2020. doi: 10.5306/wjco.v11.i10.809
Table 1 Reasons for intensive care unit admission in patients with cancer[15]
CauseComment
Postoperative careElective or emergency
Acute respiratory failure(1) Infectious: Bacterial, viral, fungal; and (2) Noninfectious: Diffuse alveolar hemorrhage, interstitial lung disease, pulmonary drug toxicity, transfusion-related acute lung injury
Cardiovascular disordersSepsis and septic shock, pulmonary embolism, drug-induced cardiomyopathy
Bleeding disordersTumor erosion, coagulopathy, thrombocytopenia
Alteration of mental status(1) Metabolic: Sepsis, drugs, multiorgan system failure, seizure, hyponatremia, hypoxia, hipercapnea; (2) Mass effect: Central nervous system bleeding, tumor effects; and (3) Others: Posterior reversible encephalopathy syndrome
Oncologic emergencyTumor lysis syndrome, leukostasis, superior vena cava syndrome, cardiac tamponade, hipercalcemia
Acute decompensated chronic comorbidityChronic obstructive pulmonary disease, cardiac disorders (e.g., cardiomyopathy, coronary artery disease), chronic kidney disease, chronic hepatopathy
OthersInitiation of chemotherapy for surveillance
Table 2 Incidence and mortality of acute respiratory failure in cancer patients[25]
IncidenceNeed for ICU admissionHospital mortality
Hematological malignancy
Acute myeloid leukemia22%-84 %66%45%
Acute lymphoblastic leukemia7%-18.5%12%-15%38.5%
Lymphoproliferative diseases8%8%40%-50%
Myelodysplastic syndrome29.4%20%17%
Autologous hematopoietic stem cell transplant3%-28%42%3%-55%
Allogeneic hematopoietic stem cell transplant24%-30%50%51%
Prolonged neutropenia8%-29.5%11%-16%5%-12%
Solid tumor
Lung cancer26%-50%100%11.2%-60%
Other solid tumors0.7%-10.3%100%6.1%-55%
Patients on immunotherapy1.3%-3.6%1.3%-
Table 3 Mechanisms and features of hypoxemia
MechanismPaO2PaCO2DA-aO2Comments
Disorders in oxygen diffusionDecreased surface area or short time for hematosis (e.g., hydrostatic edema, interstitial pneumonia, drug-associated interstitial lung disease, high-degree metastasized lungs)
Ventilation/ perfusion mismatch(1) Decreased ventilation in normally perfused lung regions (e.g., pulmonary infiltrates, pneumonia, atelectasis); and (2) Declined perfusion in normally ventilated lung areas (e.g., pulmonary embolism)
Increased intrapulmonary shunt↑↑Pulmonary venous blood bypasses ventilated alveoli without be oxygenated (e.g., acute respiratory distress syndrome)
Hypoventilation↑↑NHypoventilation
Decrease in pressure of inspired oxygenNDecreased pressure of inspired oxygen
Table 4 Causes of acute respiratory failure in patients with cancer[35]
CNS and neuromuscular disordersChest wall and pleural disordersVascular disordersAirway disordersParenchymal disorders
Drug intoxications: Narcotics; Sedatives; NeurolepticsPleural disorder: Malignant pleural effusion; Pleural tumor (primary or metastatic); Tension pneumothoraxAcute pulmonary embolism; Tumor embolism; Pulmonary venooclusive diseaseAirway obstruction: Endobronchial metastases; External airway compression; Primary tumor of periglottic areaPneumonitis: Infection; Chemotherapy; Radiotherapy; Aspiration
Encephalopathies: Infection; Metabolic; SeizureChest wall disorders: Chest wall tumor (primary or metastatic); Rib fractureOthers: Tracheoesophageal fistula; Bronchiolitis obliteransAcute respiratory distress syndrome: Infection; Chemotherapy; Radiotherapy; Transfusion
Intracranial tumors: Primary; MetastaticComplications of HSCT: Peri-engraftment respiratory distress syndrome; Diffuse alveolar hemorrhage; Idiopathic pneumonia syndrome
Neuropathies/myopathies: Nerve palsyOthers: Lymphangitic carcinomatosis; Pulmonary leukostasis; Bronchiolitis obliterans organizing pneumonia
Paraneoplastic syndromes: Eaton-Lambert syndrome; Myasthenia gravis; Guillain-Barré syndrome
Table 5 Invasive and noninvasive diagnostic procedures in cancer patients with acute respiratory failure[5]
Diagnostic procedureComments
Blood culturesHospital-acquired bacteria
Multislice or high-resolution CT scanIn most cases without contrast media; MRI if a pulmonary CT scan is not feasible
EchocardiographyCardiac evaluation
Sputum examinationBacteria; Fungi; Mycobacteria
Induced sputumPneumocystis jiroveci
Nasopharyngeal aspirates or nasal swabsAdenovirus, metapneumovirus, coronavirus, parainfluenza virus types 1, 2, 3 and 4; influenza virus types A and B, respiratory syncytial virus A and B; rhinovirus A, B, and C; bocavirus and enterovirus
Polymerase chain reaction blood testHerpesviridae; Cytomegalovirus; Epstein-Barr virus
Circulating Aspergillus galactomannanAspergillus spp.
Serologic testsChlamydia pneumoniae; Mycoplasma pneumoniae; Legionella pneumophila
Urine antigenLegionella pneumophila; Streptococcus pneumoniae
BAL (mandatory)(1) Cytospin preparation including Giemsa stain for cytological diagnostics and Gram stain; (2) Quantitative or semi-quantitative bacteriological cultures including culture media to detect Legionella spp., mycobacteria and fungi; (3) Calcofluor white or equivalent stain (assessment of fungi); (4) Quantitative (if possible) PCR for Pneumocystis jirovecii; (5) Direct immunofluorescence test for Pneumocystis jirovecii; (6) Aspergillus antigen (Galactomannan ELISA); and (7) Mycobacterium tuberculosis PCR, atypical mycobacteria
BAL (optional)(1) PCR for cytomegalovirus, respiratory syncytial virus, influenza A/B virus, parainfluenza virus, human metapneumovirus, adenovirus, varicella zoster virus, and Pneumocystis jirovecii (quantitative); and (2) Aspergillus antigen (Galactomannan ELISA); Panfungal or Aspergillus/ mucormycetes PCR
Transbronchial biopsiesNot recommended in general in febrile neutropenic and/or thrombocytopenic patients as the first line procedure
Table 6 Risk-stratification tools for patients with febrile neutropenia[54,60-62]
Description/CriteriaGroup/ Points
Talcott classification system
Patients hospitalized at onset of fever and neutropenia (inpatient at presentation)1
Outpatients at presentation but with comorbidities which require hospitalization2
Outpatients at presentation with uncontrolled cancer but without comorbidities3
Outpatients at presentation without comorbidities and controlled cancer4
Multinational association of supportive care of cancer (MASCC) risk-index
Burden of febrile neutropenia
No or mild symptoms: No fever, hemodynamic compromise or clinically significant signs and symptoms of particular site of infection5
Moderate symptoms: Any others not included in mild or severe symptoms3
Severe symptoms: High grade fever, any hemodynamic compromise or any of the serious complications requiring high dependency unit support0
No hypotension (systolic blood pressure > 90 mmHg)5
Solid tumor or hematological malignancy with no previous fungal infection4
No chronic obstructive pulmonary disease4
No dehydration requiring parenteral fluids3
Outpatient status3
Age < 60 yr2
Clinical Index of Stable Febrile Neutropenia (CISNE) score
Eastern Cooperative Oncology Group performance status ≥ 22
Stress-induced hyperglycemia2
Chronic obstructive pulmonary disease (on steroids, supplemental oxygen, or bronchodilators)1
Chronic cardiovascular disease (excluding single uncomplicated episode of atrial fibrillation)1
Mucositis (at least the presence of patchy ulcerations or pseudomembranes, or moderate pain with modified diet)1
Monocytes < 200 cells/mm31
Table 7 Empiric antibiotic therapy in high-risk patients with febrile neutropenia[40,54,55,79,83]
AntibiotherapyIndication
Antipseudomonal β-lactam agent (cefepime, ceftazidime)All patients with febrile neutropenia
OR
Carbapenem (meropenem or mipenem/cilastatin)Hemodynamic instability
OR
Piperacillin/tazobactam
OR
Novel cephalosporin/β-lactamase inhibitor (Ceftolozane/tazobactam or Ceftazidime/avibactam)
PLUS
Aminoglycosides (optional)
PLUS
Vancomycin
Vancomycin, linezolid or daptomycinSuspected catheter-related infections
Skin or soft-tissue infection
Risk of methicillin-resistant Staphylococcus aureus
Linezolid or daptomycinRisk of vancomycin-resistant Enterococcus spp.
CarbapenemRisk of extended-spectrum β-lactamase-producing gram negative bacteria
Polymyxin-colistin or tigecyclineRisk of Klebsiella pneumonia carbapenemase
Ciprofloxacin + clindamycinPenicillin-allergic patients
OR
Aztreonam + vancomycin
Trimethoprim/sulfamethoxazoleSuspected Pneumocystis pneumonia
Antifungal drugs (echinocandins, amphotericin B lipid-based formulations)Suspected invasive mycosis
Table 8 Main cardiovascular complications of oncological therapy[91,92]
Cardiovascular complicationsTypesOncological therapies
Left ventricular dysfunctionCardiomyopathy or myocarditisAnthracyclines (e.g., doxorubicin, aunorubicin, epirubicin, idarubicin), antiangiogenic agents (e.g., bevacisumab, sunitinib, sorafenib), alkylating agents (e.g., cyclophosphamide, cisplatin), monoclonal antibodies (e.g., trastuzumab, lapatinib), tyrosine kinase inhibitors (e.g., imatinib, dasatinib, nilotinib, sunitinib, sorafenib, lapatinib)
ArrhythmiasQT prolongation, bradycardia, heart block; Atrial arrhythmias; Ventricular arrhythmias or sudden cardiac deathTaxanes, arsenic trioxide, tyrosine kinase inhibitors (e.g., imatinib, dasatinib, nilotinib, sunitinib, sorafenib, lapatinib), anthracyclines(e.g., doxorubicin, aunorubicin, epirubicin, idarubicin)
Coronary artery diseaseAcute coronary syndromes (included acute myocardial infarction); Chronic ischemic heart diseaseAntimetabolites (e.g., gemcitabine, cytarabine), cisplatin, taxanes, thalidomide, bevacisumab, radiotherapy
Pericardial diseasePericarditis (effusive or constrictive form)Radiotherapy
HypertensionNew-onset or worseningVascular endothelial growth factor inhibitors, antiangiogenic agents (e.g., bevacisumab, sunitinib, sorafenib), cisplatin, interleukins, interferon
Table 9 Immunological effects of opioids
OpioidsImmunological effects
MorphineDecreased NK cell cytotoxicity[131]; Impaired intestinal barrier function[140]
Fentanyl and sufentanilDecreased NK cell cytotoxicity[141]; Inhibition of cellular and humoral immunity[141]
TramadolReverse the immunosuppression after surgery[142]
Table 10 Causes of cancer-related seizure and cancer-related acute hydrocephalus[158]
CausesComments
Cancer-related seizure
Low-grade tumorsGlioma and oligodendroglioma have intrinsic epileptogenic activity as a result of their long survival and reduced seizure threshold
High-grade tumorsUsually secondary to necrosis, hemorrhage or edema
Brain metastasesUp to 40%
Tumor locationCortical tumors and those on epileptogenic areas (e.g., mesial temporal lobe and insula) are associated with intractable epilepsy
StrokeIschemic or hemorrhagic
Drug toxicityCytarabine, methotrexate, cisplatin, vincristine, cyclophosphamide, anthracyclines
Neoplastic meningitis
Paraneoplastic encephalitis
Central nervous system infections
Electrolytic imbalanceHyponatremia, hypocalcaemia
Metabolic disordersHypoglycemia
Liver or kidney failure
Aggravated preexisting epilepsyWithdrawal medication
Cancer-related acute hydrocephalus
Stopped CSF flow by tumor obstruction of ventricular systemColloid cysts, ependymoma, intraventricular meningioma, choroid plexus papilloma or posterior fossa tumor; in adults it is often due to leptomeningeal carcinomatosis and intra-ventricular extension of metastasis
Increased CSF content due to deficit in reabsorptionVenous sinus thrombosis, infectious meningitis, metastatic seeding or subarachnoid hemorrhage