For: | Niu XM, Lu S. Acetylcholine receptor pathway in lung cancer: New twists to an old story. World J Clin Oncol 2014; 5(4): 667-676 [PMID: 25302169 DOI: 10.5306/wjco.v5.i4.667] |
---|---|
URL: | https://www.wjgnet.com/2218-4333/full/v5/i4/667.htm |
Number | Citing Articles |
1 |
Xiaowei Chen, Yanfei Jia, Yujie Zhang, Dajie Zhou, Haiji Sun, Xiaoli Ma. α5‐nAChR contributes to epithelial‐mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. Journal of Cellular and Molecular Medicine 2020; 24(4): 2497 doi: 10.1111/jcmm.14941
|
2 |
Ji Ye Lim, Xiang-Dong Wang. Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2020; 1865(11): 158652 doi: 10.1016/j.bbalip.2020.158652
|
3 |
Jin Wang, Kaifan Liu, Jiawen Li, Hailong Zhang, Xian Gong, Xiangrong Song, Meidan Wei, Yaoyu Hu, Jianxiang Li. Identifying and assessing a prognostic model based on disulfidptosis-related genes: implications for immune microenvironment and tumor biology in lung adenocarcinoma. Frontiers in Immunology 2024; 15 doi: 10.3389/fimmu.2024.1371831
|
4 |
Jamie R. Friedman, Stephen D. Richbart, Justin C. Merritt, Kathleen C. Brown, Nicholas A. Nolan, Austin T. Akers, Jamie K. Lau, Zachary R. Robateau, Sarah L. Miles, Piyali Dasgupta. Acetylcholine signaling system in progression of lung cancers. Pharmacology & Therapeutics 2019; 194: 222 doi: 10.1016/j.pharmthera.2018.10.002
|
5 |
Gloria M. Calaf, Leodan A. Crispin, Juan P. Muñoz, Francisco Aguayo, Tammy C. Bleak. Muscarinic Receptors Associated with Cancer. Cancers 2022; 14(9): 2322 doi: 10.3390/cancers14092322
|
6 |
REMI YONEYAMA, KAZUTETSU AOSHIBA, KINYA FURUKAWA, MAKOTO SAITO, HIROAKI KATABA, HIROYUKI NAKAMURA, NORIHIKO IKEDA. Nicotine enhances hepatocyte growth factor-mediated lung cancer cell migration by activating the α7 nicotine acetylcholine receptor and phosphoinositide kinase-3-dependent pathway. Oncology Letters 2016; 11(1): 673 doi: 10.3892/ol.2015.3930
|
7 |
Naser A. Alsharairi. Insights into the Mechanisms of Action of Proanthocyanidins and Anthocyanins in the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. International Journal of Molecular Sciences 2022; 23(14): 7905 doi: 10.3390/ijms23147905
|
8 |
Raewyn J Hopkins, Robert P Young. Mevalonate Signaling, COPD and Cancer: The Statins and Beyond. Journal of Investigative Medicine 2019; 67(4): 711 doi: 10.1136/jim-2018-000829
|
9 |
|
10 |
F.J. Campoy, C.J. Vidal, E. Muñoz-Delgado, M.F. Montenegro, J. Cabezas-Herrera, S. Nieto-Cerón. Cholinergic system and cell proliferation. Chemico-Biological Interactions 2016; 259: 257 doi: 10.1016/j.cbi.2016.04.014
|
11 |
Hongling Zou, Yan Chen, Xinping Zhu, Xinyun Zhao, Jili Cao, Yuxin Chen, Ziru Zhang, Yongqiang Zhu, Qun Li, Mingqian Li. Spinosad blocks CHRNA5 mediated EGFR signaling pathway activation to inhibit lung adenocarcinoma proliferation. Biomedicine & Pharmacotherapy 2024; 177: 117105 doi: 10.1016/j.biopha.2024.117105
|
12 |
Shuhai Chen, Xiaoliang Kang, Guangwei Liu, Bingyuan Zhang, Xiao Hu, Yujie Feng. α7-Nicotinic Acetylcholine Receptor Promotes Cholangiocarcinoma Progression and Epithelial–Mesenchymal Transition Process. Digestive Diseases and Sciences 2019; 64(10): 2843 doi: 10.1007/s10620-019-05609-3
|
13 |
Zihan He, Yuqin Xu, Zihan Rao, Zhongwei Zhang, Jianming Zhou, Tong Zhou, Huai Wang. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine. Science of The Total Environment 2024; 912: 169604 doi: 10.1016/j.scitotenv.2023.169604
|
14 |
Yao Zhang, Yanfei Jia, Ping Li, Huanjie li, Dongjie Xiao, Yunshan Wang, Xiaoli Ma. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. Journal of Genetics and Genomics 2017; 44(7): 355 doi: 10.1016/j.jgg.2017.03.003
|
15 |
Stephen D. Richbart, Justin C. Merritt, Nicholas A. Nolan, Piyali Dasgupta. . Advances in Cancer Research 2021; 152: 1 doi: 10.1016/bs.acr.2021.05.001
|
16 |
NINGNING DANG, XIANGUANG MENG, HAIYAN SONG. Nicotinic acetylcholine receptors and cancer. Biomedical Reports 2016; 4(5): 515 doi: 10.3892/br.2016.625
|
17 |
Abdul Mannan Baig, H. R. Ahmad. Evidence of a M1-muscarinic GPCR homolog in unicellular eukaryotes: featuring Acanthamoeba spp bioinformatics 3D-modelling and experimentations. Journal of Receptors and Signal Transduction 2017; 37(3): 267 doi: 10.1080/10799893.2016.1217884
|
18 |
Xingxu Yi, Wanzhen Li, Yiyuan Wang, Xueran Chen, Fang Ye, Gengyun Sun, Jingxian Chen. The relationship between CHRNA5/A3/B4 gene cluster polymorphisms and lung cancer risk. Medicine 2021; 100(6): e24355 doi: 10.1097/MD.0000000000024355
|
19 |
Ping Zhu, Zhengxin Jin, Guiyu Kang, Yanfei Jia, Duanrui Liu, Qian Zhang, Feiyang Guo, Ying Jia, Yang Jiao, Jingtan Li, Haiji Sun, Xiaoli Ma. Alpha5 nicotinic acetylcholine receptor mediated immune escape of lung adenocarcinoma via STAT3/Jab1-PD-L1 signalling. Cell Communication and Signaling 2022; 20(1) doi: 10.1186/s12964-022-00934-z
|
20 |
Hind Al Khashali, Ban Darweesh, Ravel Ray, Ben Haddad, Caroline Wozniak, Robert Ranzenberger, Stuti Goel, Jeneen Khalil, Jeffrey Guthrie, Deborah Heyl, Hedeel Guy Evans. Regulation of Vascular Endothelial Growth Factor Signaling by Nicotine in a Manner Dependent on Acetylcholine-and/or β-Adrenergic-Receptors in Human Lung Cancer Cells. Cancers 2023; 15(23): 5500 doi: 10.3390/cancers15235500
|
21 |
Trishla Bhatnagar, Madiha Haider, Mohd Yasir Khan, Mohammad Zahid Ashraf. WGCNA and integrative network analysis identify CHRNA5 and CTLA4 as potential therapeutic targets against angiosarcoma. Cancer Treatment and Research Communications 2024; 42: 100862 doi: 10.1016/j.ctarc.2024.100862
|
22 |
Hind Al Khashali, Ravel Ray, Ban Darweesh, Caroline Wozniak, Ben Haddad, Stuti Goel, Issah Seidu, Jeneen Khalil, Brooke Lopo, Nayrooz Murshed, Jeffrey Guthrie, Deborah Heyl, Hedeel Guy Evans. Amyloid Beta Leads to Decreased Acetylcholine Levels and Non-Small Cell Lung Cancer Cell Survival via a Mechanism That Involves p38 Mitogen-Activated Protein Kinase and Protein Kinase C in a p53-Dependent and -Independent Manner. International Journal of Molecular Sciences 2024; 25(9): 5033 doi: 10.3390/ijms25095033
|
23 |
Yan Fu, Hongfei Ci, Wei Du, Qiongzhu Dong, Huliang Jia. CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity. Pharmaceutics 2022; 14(2): 275 doi: 10.3390/pharmaceutics14020275
|
24 |
Mylène Vaillancourt, Pamela Chia, Shervin Sarji, Jason Nguyen, Nir Hoftman, Gregoire Ruffenach, Mansoureh Eghbali, Aman Mahajan, Soban Umar. Autonomic nervous system involvement in pulmonary arterial hypertension. Respiratory Research 2017; 18(1) doi: 10.1186/s12931-017-0679-6
|
25 |
Sabina Berne, Maja Čemažar, Robert Frangež, Polona Juntes, Simona Kranjc, Marjana Grandič, Monika Savarin, Tom Turk. APS8 Delays Tumor Growth in Mice by Inducing Apoptosis of Lung Adenocarcinoma Cells Expressing High Number of α7 Nicotinic Receptors. Marine Drugs 2018; 16(10): 367 doi: 10.3390/md16100367
|
26 |
Hans-Juergen Haussmann, Marc W. Fariss. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotineper se. Critical Reviews in Toxicology 2016; 46(8): 701 doi: 10.1080/10408444.2016.1182116
|
27 |
Hyojin Pyun, Madhawa Gunathilake, Jeonghee Lee, Il Ju Choi, Young-Il Kim, Joohon Sung, Jeongseon Kim. Functional Annotation and Gene Set Analysis of Gastric Cancer Risk Loci in a Korean Population. Cancer Research and Treatment 2024; 56(1): 191 doi: 10.4143/crt.2022.958
|
28 |
Lorena Pochini, Giusi Elisabetta Tedesco, Tiziano Mazza, Mariafrancesca Scalise, Cesare Indiveri. OCTN1 mediates acetylcholine transport in the A549 lung cancer cells: possible pathophysiological implications. Frontiers in Molecular Biosciences 2024; 11 doi: 10.3389/fmolb.2024.1512530
|