Copyright
©The Author(s) 2025.
World J Radiol. Sep 28, 2025; 17(9): 110447
Published online Sep 28, 2025. doi: 10.4329/wjr.v17.i9.110447
Published online Sep 28, 2025. doi: 10.4329/wjr.v17.i9.110447
Table 1 Summary of artificial intelligence-based carotid computed tomography angiography plaque detection studies
Ref. | Sample size | Model type | Dataset source | Results | Clinical impact |
Jie et al[6] | 3245 (meta-analysis, 17 studies) | Mixed AI models | Multicenter/multi-country | Sensitivity of 0.91, specificity of 0.88, AUC of 0.94 | Improved CTA plaque detection accuracy |
Pisu et al[7] | 156 | ML | Single-center CTA | AUC of 0.91, sensitivity of 87%, specificity of 85% | Early identification of high-risk symptomatic plaques |
Shi et al[8] | 112 | Radiomics + logistic regression | Single-center CTA | AUC of 0.89 | Differentiates plaque stability, optimizes treatment planning |
Zhai et al[9] | 1234 | Convolutional neural network (fully automatic detection) | Multicenter CTA | Sensitivity of 0.93, specificity of 0.92 | Rapid automated plaque screening |
Hu et al[10] | 205 | Radiomics + dual-energy CTA | Multicenter CTA | AUC of 0.90, accuracy of 88% | Improved symptomatic plaque recognition |
Guo et al[11] | 120 | Two-stage deep learning | Single-center CTA | Sensitivity of 0.92, specificity of 0.89 | Good performance in early-stage validation |
Xie et al[12] | 560 | Swin-UNet + multi-scale supervision | Multicenter CTA | Dice coefficients of 0.93 | High-precision segmentation for quantitative analysis |
Song et al[13] | 98 | AI segmentation + ultrasound radiomics | Single-center ultrasound | AUC of 0.88 | Ultrasound-based method applicable to CTA risk assessment |
Wei et al[14] | 4562 | ML (random forest, etc.) | Single-center health check-up | AUC of 0.85 | Early population risk prediction tool |
- Citation: Wang DY, Yang T, Zhang CT, Zhan PC, Miao ZX, Li BL, Yang H. Artificial intelligence in carotid computed tomography angiography plaque detection: Decade of progress and future perspectives. World J Radiol 2025; 17(9): 110447
- URL: https://www.wjgnet.com/1949-8470/full/v17/i9/110447.htm
- DOI: https://dx.doi.org/10.4329/wjr.v17.i9.110447