Copyright
©The Author(s) 2025.
World J Radiol. Sep 28, 2025; 17(9): 109116
Published online Sep 28, 2025. doi: 10.4329/wjr.v17.i9.109116
Published online Sep 28, 2025. doi: 10.4329/wjr.v17.i9.109116
Table 1 Summary of the database information
Dataset name | Subject sample | Age range | Sampling rate | Recording environment |
Snoring-detection[22] | 1000 audio clips (500 snoring + 500 non- snoring) | Not specified | 16 kHz | Various background environments |
ICSD[23] | Infant crying and snoring recordings | 0–2 years (infants) | Various | Indoor environments |
PSG-audio corpus[24] | 212 subjects | 23–85 years | 48 kHz | Sleep laboratories |
SSBPR dataset[25] | 20 patients for body position recognition | 26–57 years | 32 kHz | Hospital environment |
Table 2 The performance of snoring sounds detection based on different works
Ref. | Image type | Model | Main results |
Hong et al[56] | Log-Mel spectrogram | Vision Transformer-based deep learning model | Sen: 89.8%, Spe: 91.3%, Acc: 95.9% |
Romero et al[58] | Bottleneck features | Deep autoencoder, auditory model | F1: 94.75% |
Liu et al[59] | Time-domain waveform, spectrogram, Mel-spectrogram | MobileNetV2 CNN | Acc: 95.00% |
Ye et al[57] | Spectrogram, Mel-spectrogram, CWT | CNN, multi-channel spectrogram | Acc: 94.18% |
Lim et al[44] | Time-domain waveform, spectrogram, Mel-spectrogram | RNN | Acc: 98.9% |
Jiang et al[60] | Time-domain waveform, spectrum, spectrogram, Mel-spectrogram, CQT-spectrogram | CNNs-DNNs, CNNs-LSTMs-DNNs | Acc: 95.00% |
Li et al[61] | Spectrogram | 1D CNN, 2D CNN (visibility graph) | Acc: 89.3%, Sen: 89.7%, Spe: 88.5% |
Xie et al[62] | Spectrogram | CNN, RNN | Acc: 95.3%, Sen: 92.2%, Spe: 97.7% |
González-martínez et al[63] | Harmonic spectrogram | CNN | AUC: 0.89 |
Table 3 The performance of snoring sounds classification of obstructive sleep apnea-hypopnea syndrome patients
Ref. | Image type | Model | Classification | Classification results |
Song et al[55] | Mel-spectrogram | XGBoost, CNN, ResNet | OSAHS snoring vs simple snore | Acc: 83.44%, Sen: 85.27% |
Ding et al[46] | Mel-spectrogram | VGG19 + LSTM | Simple snoring vs OSAHS snoring | Acc: 85.21% |
Cheng et al[65] | MFCC, Fbanks, LPC | LSTM | Apnea vs normal snoring, | Acc: 95.3% |
Li et al[66] | Spectrogram, Mel-spectrogram | CNN | OSAHS detection | Acc: 92.5%, Sen: 93.9%, Spc: 91.2% |
Serrano et al[67] | Mel-spectrogram | VGGish + bi-LSTM | Apnea vs non-apnea | Acc: 95% |
- Citation: Ding L, Peng JX, Song YJ. Deep learning approaches for image-based snoring sound analysis in the diagnosis of obstructive sleep apnea-hypopnea syndrome: A systematic review. World J Radiol 2025; 17(9): 109116
- URL: https://www.wjgnet.com/1949-8470/full/v17/i9/109116.htm
- DOI: https://dx.doi.org/10.4329/wjr.v17.i9.109116