Published online Sep 28, 2018. doi: 10.4329/wjr.v10.i9.100
Peer-review started: April 26, 2018
First decision: May 22, 2018
Revised: July 12, 2018
Accepted: July 14, 2018
Article in press: July 16, 2018
Published online: September 28, 2018
Processing time: 155 Days and 20 Hours
Late gadolinium enhancement magnetic resonance imaging is typically used for myocardial viability imaging. An important application of the late gadolinium enhancement (LGE) technique is the assessment of myocardial scar in patients with ventricular tachycardia (VT) before the ablation procedure.
LGE imaging is challenging in patients with cardiac implantable electronic devices (CIEDs) due to device-generated metal hyperintensity artifacts, which compromise the effect of the IR pulse and obscure the region of interest.
To develop a modified inversion recovery (IR) technique that eliminates the LGE hyperintensity artifacts and improves diagnostic image quality.
The modified pulse sequence developed in this study includes a wideband IR RF pulse with adjustable frequency offset and bandwidth, which allows for optimal myocardial signal nulling even in the presence of CIEDs. A phantom experiment was performed and twelve in vivo scans were conducted on patients with CIEDs. The imaging parameters were optimized to improve myocardial nulling and minimize metal artifacts.
The developed wideband IR sequence significantly minimized the hyperintensity artifacts, such that scar assessment could be confidently performed. Increasing the IR frequency BW results in better artifact reduction, although this improvement is achieved at the cost of incomplete myocardial nulling.
The developed wideband IR technique minimizes the CIED-generated hyperintensity artifacts without increasing scan time, and allows for accurate identification of ablation targets in VT patients. The RF pulse BW should be set to the minimum value that eliminates the artifact. Further, proper setting of the frequency offset could allow for removing the artifact without the need to increase the frequency BW. Based on the studied cases, optimal BW is in the range of 2000-3000 Hz with optimal frequency shift up to 1000 Hz.
The developed optimized IR technique allows MRI to play a larger role in treatment planning in VT patients with CIEDs. Future studies should investigate the clinical usefulness of the developed technique by implementing it on a large number of VT patients with different disease stages and CIED types.