Published online Dec 28, 2016. doi: 10.4329/wjr.v8.i12.902
Peer-review started: June 17, 2016
First decision: August 4, 2016
Revised: August 29, 2016
Accepted: October 22, 2016
Article in press: October 24, 2016
Published online: December 28, 2016
Processing time: 188 Days and 14.9 Hours
Since its introduction in the 1970s, computed tomography (CT) has revolutionized diagnostic decision-making. One of the major concerns associated with the widespread use of CT is the associated increased radiation exposure incurred by patients. The link between ionizing radiation and the subsequent development of neoplasia has been largely based on extrapolating data from studies of survivors of the atomic bombs dropped in Japan in 1945 and on assessments of the increased relative risk of neoplasia in those occupationally exposed to radiation within the nuclear industry. However, the association between exposure to low-dose radiation from diagnostic imaging examinations and oncogenesis remains unclear. With improved technology, significant advances have already been achieved with regards to radiation dose reduction. There are several dose optimization strategies available that may be readily employed including omitting unnecessary images at the ends of acquired series, minimizing the number of phases acquired, and the use of automated exposure control as opposed to fixed tube current techniques. In addition, new image reconstruction techniques that reduce radiation dose have been developed in recent years with promising results. These techniques use iterative reconstruction algorithms to attain diagnostic quality images with reduced image noise at lower radiation doses.
Core tip: The rapid increase in computed tomography (CT) utilisation has brought with it significant public concern with regards to the doses of ionising radiation delivered during scanning due to the fact that some experimental and epidemiological evidence has linked exposure to low-dose radiation to the development of solid organ cancers and leukaemia. It now seems that a threshold-model of risk might be more appropriate with the risk increasing exponentially once cumulative doses of 100 mSv or more are reached. Nevertheless, there is an inherent responsibility on the medical community to keep radiation doses “as low as reasonably achievable”. Each imaging procedure needs to be justified and optimised and the minimum radiation dose possible used to obtain a diagnostic CT should remain the goal in each clinical scenario.