Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Nov 27, 2025; 17(11): 109991
Published online Nov 27, 2025. doi: 10.4240/wjgs.v17.i11.109991
Published online Nov 27, 2025. doi: 10.4240/wjgs.v17.i11.109991
Table 1 Main characteristics of 10 studies included in meta-analysis
| Ref. | Year | Location | Ethnicity | Study design | Sample size | Type of lesion | Imaging modality | AI model for segmentation | Diagnostic power | ||||||||
| Case | Control | ||||||||||||||||
| Case | Control | TP | FP | FN | TN | TP | FP | FN | TN | ||||||||
| van der Putten et al[11] | 2020 | Netherlands | Caucasian | Cohort | 80 | 80 | Barrett’s neoplasia | BLI | ResNet | 37 | 7 | 3 | 33 | 29 | 10 | 11 | 30 |
| Yan et al[12] | 2020 | China | Asian | Cohort | 80 | 80 | GIM | NBI | EfficientNet B4 | 34 | 6 | 3 | 37 | 32 | 8 | 5 | 35 |
| Struyvenberg et al[13] | 2021 | Netherlands | Caucasian | Cohort | 134 | 134 | Barrett’s neoplasia | VLE | VGG16 | 36 | 17 | 3 | 78 | 27 | 14 | 12 | 81 |
| Hussein et al[14] | 2022 | United Kingdom | Caucasian | Cohort | 61 | 61 | Barrett’s neoplasia | WLE | FCNResNet 50 | 27 | 4 | 1 | 29 | 22 | 17 | 6 | 16 |
| Zhao et al[15] | 2022 | China | Asian | Cohort | 268 | 268 | CAG | NBI | U-Net | 96 | 10 | 13 | 149 | 66 | 27 | 43 | 132 |
| Zhao et al[16] | 2022 | China | Asian | Paired cohort study | 676 | 676 | CAG | WLE | U-Net | 284 | 10 | 54 | 328 | 212 | 61 | 126 | 277 |
| Abdelrahim et al[17] | 2023 | United Kingdom | Caucasian | Cohort | 75 | 75 | Barrett’s neoplasia | WLE | SegNet | 30 | 4 | 2 | 39 | 20 | 10 | 12 | 33 |
| Zhao et al[18] | 2023 | China | Asian | Paired cohort study | 524 | 524 | CAG | NBI | U-Net | 234 | 25 | 28 | 237 | 177 | 78 | 85 | 184 |
| Meinikheim et al[19] | 2024 | Germany | Caucasian | Cohort | 96 | 96 | Barrett’s neoplasia | Multi-modal | DeepLab V3+ | 40 | 12 | 11 | 33 | 36 | 15 | 15 | 30 |
| Tao et al[20] | 2024 | China | Asian | Cohort | 119 | 119 | CAG | WLE | U-Net++ | 74 | 3 | 4 | 38 | 55 | 4 | 23 | 37 |
Table 2 Technical characteristics of artificial intelligence-enhanced real-time computer-aided detection systems utilized in included studies
| Ref. | Year | AI model type | Hardware configuration | Processing speed | Dataset size | Risk stratification tool |
| van der Putten et al[11] | 2020 | Integrated U-Net + Transfer Learning | Titan Xp 12GB GPU | < 2 sec/frame | 500000 frames | None |
| Yan et al[12] | 2020 | EfficientNetB4 | Not specified | 20 fps | 11000 frames | None |
| Struyvenberg et al[13] | 2021 | VGG16 | Not specified | 56 fps | 318 video cases | None |
| Hussein et al[14] | 2022 | ResNet101 + FCN ResNet50 | Not specified | 48-56 fps | 150000 frames | None |
| Zhao et al[15] | 2022 | U-Net | Not specified | Not specified | Not specified | None |
| Zhao et al[16] | 2022 | U-Net | GeForce RTX 3090 | 30 fps | Not specified | None |
| Abdelrahim et al[17] | 2022 | VGG16 + SegNet Hybrid Model | GeForce RTX 2080 Ti | 30 fps | Training: 109071 frames; Testing: 75 video cases | None |
| Zhao et al[18] | 2023 | U-Net Extended Model | GeForce RTX 3090 | 30 fps | Not specified | OLGA |
| Meinikheim et al[19] | 2024 | DeepLabV3+ + ResNet50 + Mean-Teacher | Not specified | 30 fps | Training: 51273 frames; Testing: 96 video cases | None |
| Tao et al[20] | 2024 | UNet++ + ResNet50 Dual Model System | Not specified | Not specified | Training: 119 video cases; Testing: 102 video cases | Kimura-Takemoto |
Table 3 Subgroup analysis of diagnostic effect
| Subgroup | No. studies | No. patients | Sensitivity (AI-CAD) | Specificity (AI-CAD) | Sensitivity (endoscopist) | Specificity (endoscopist) | Difference of accuracy | Difference of log (DOR) | ||||||||||||
| Value | I2 (%) | P value | Value | I2 (%) | P value | Value | I2 (%) | P value | Value | I2 (%) | P value | Value | I2 (%) | P value | Value | I2 (%) | P value | |||
| Race | ||||||||||||||||||||
| Asian | 5 | 1667 | 0.890 (95%CI: 0.837-0.928) | 53.0 | 0.070 | 0.930 (95%CI: 0.891-0.956) | 70.8 | 0.009 | 0.658 (95%CI: 0.618-0.696) | 43.9 | 0.039 | 0.810 (95%CI: 0.723-0.874) | 75.3 | 0.001 | 0.167 (95%CI: 0.112-0.221) | 22.9 | 0.118 | -0.355 (95%CI: | 9.3 | 0.296 |
| Others | 5 | 446 | 0.896 (95%CI: 0.821-0.942) | 49.9 | 0.083 | 0.831 (95%CI: 0.746-0.891) | 16.3 | 0.276 | 0.703 (95%CI: 0.632-0.766) | 0.0 | 0.746 | 0.721 (95%CI: 0.608-0.812) | 76.1 | 0.002 | 0.142 (95%CI: 0.072-0.211) | 64.8 | 0.022 | 0.151 (95%CI: | 62.6 | 0.032 |
| Number of patients | ||||||||||||||||||||
| < 100 | 5 | 392 | 0.895 (95%CI: 0.819-0.941) | 49.2 | 0.089 | 0.842 (95%CI: 0.741-0.909) | 31.4 | 0.242 | 0.731 (95%CI: 0.660-0.791) | 17.6 | 0.235 | 0.703 (95%CI: 0.594-0.793) | 64.0 | 0.027 | 0.147 (95%CI: 0.074-0.220) | 60.2 | 0.041 | 0.213 (95%CI: | 60.3 | 0.035 |
| ≥ 100 | 5 | 1721 | 0.891 (95%CI: 0.838-0.928) | 54.0 | 0.066 | 0.922 (95%CI: 0.870-0.954) | 83.1 | 0.000 | 0.650 (95%CI: 0.614-0.684) | 6.7 | 0.432 | 0.816 (95%CI: 0.742-0.872) | 78.8 | 0.000 | 0.163 (95%CI: 0.106-0.219) | 66.1 | 0.037 | -0.387 (95%CI: | 3.4 | 0.306 |
| Study design | ||||||||||||||||||||
| Paired | 2 | 1200 | 0.868 (95%CI: 0.783-0.923) | 71.1 | 0.063 | 0.944 (95%CI: 0.879-0.975) | 90.4 | 0.001 | 0.650 (95%CI: 0.586-0.710) | 33.8 | 0.219 | 0.766 (95%CI: 0.600-0.877) | 91.1 | 0.001 | 0.196 (95%CI: 0.125-0.266) | 0.0 | 0.378 | -0.774 (95%CI: | 0.0 | 0.536 |
| Others | 8 | 913 | 0.904 (95%CI: 0.856-0.937) | 44.0 | 0.116 | 0.868 (95%CI: 0.803-0.913) | 57.7 | 0.018 | 0.694 (95%CI: 0.640-0.743) | 30.1 | 0.159 | 0.773 (95%CI: 0.684-0.842) | 75.2 | 0.000 | 0.141 (95%CI: 0.092-0.189) | 56.8 | 0.026 | 0.075 (95%CI: | 40.5 | 0.101 |
| Type of lesion | ||||||||||||||||||||
| BE | 5 | 446 | 0.896 (95%CI: 0.821-0.942) | 49.9 | 0.083 | 0.831 (95%CI: 0.746-0.891) | 16.3 | 0.276 | 0.703 (95%CI: 0.632-0.766) | 0.0 | 0.746 | 0.721 (95%CI: 0.608-0.812) | 76.1 | 0.002 | 0.142 (95%CI: 0.072-0.211) | 64.8 | 0.022 | 0.151 (95%CI: | 62.6 | 0.032 |
| Others | 5 | 1667 | 0.890 (95%CI: 0.837-0.928) | 53.0 | 0.070 | 0.930 (95%CI: 0.891-0.956) | 70.8 | 0.009 | 0.658 (95%CI: 0.618-0.696) | 43.9 | 0.039 | 0.810 (95%CI: 0.723-0.874) | 75.3 | 0.001 | 0.167 (95%CI: 0.112-0.221) | 22.9 | 0.118 | -0.355 (95%CI: | 9.3 | 0.296 |
| Imaging modality | ||||||||||||||||||||
| WLE | 4 | 931 | 0.906 (95%CI: 0.835-0.949) | 63.0 | 0.025 | 0.935 (95%CI: 0.877-0.967) | 59.7 | 0.044 | 0.662 (95%CI: 0.596-0.722) | 26.1 | 0.255 | 0.764 (95%CI: 0.634-0.858) | 88.1 | 0.000 | 0.202 (95%CI: 0.134-0.269) | 0.1 | 0.438 | 0.560 (95%CI: | 65.3 | 0.020 |
| Others | 6 | 1182 | 0.886 (95%CI: 0.827-0.926) | 26.8 | 0.253 | 0.861 (95%CI: 0.790-0.911) | 73.1 | 0.002 | 0.685 (95%CI: 0.630-0.735) | 31.3 | 0.127 | 0.775 (95%CI: 0.679-0.849) | 66.3 | 0.007 | 0.128 (95%CI: 0.074-0.183) | 69.1 | 0.005 | -0.530 (95%CI: | 0.9 | 0.536 |
| AI model for segmentation | ||||||||||||||||||||
| U-Net | 4 | 1587 | 0.887 (95%CI: 0.828-0.927) | 59.7 | 0.048 | 0.939 (95%CI: 0.904-0.961) | 69.1 | 0.015 | 0.648 (95%CI: 0.611-0.682) | 11.0 | 0.323 | 0.810 (95%CI: 0.710-0.881) | 83.2 | 0.000 | 0.187 (95%CI: 0.155-0.220) | 0.0 | 0.735 | -0.376 (95%CI: | 17.4 | 0.187 |
| Others | 6 | 526 | 0.900 (95%CI: 0.835-0.941) | 43.6 | 0.119 | 0.834 (95%CI: 0.765-0.886) | 7.3 | 0.358 | 0.724 (95%CI: 0.660-0.779) | 0.0 | 0.327 | 0.737 (95%CI: 0.632-0.820) | 72.4 | 0.002 | 0.118 (95%CI: 0.069-0.167) | 63.1 | 0.021 | 0.093 (95%CI: | 52.1 | 0.060 |
Table 4 Meta-regression examining the impact of imaging modality and artificial intelligence model on artificial intelligence-enhanced real-time computer-aided detection systems specificity and accuracy gain
| Outcome | Covariate | β | 95%CI | P value | τ2 | I2 (%) | R2 (%) |
| Specificity | Intercept | 1.418 | 1.099-1.737 | 0 | 0 | 0 | 10000 |
| WLE (vs others) | 0.816 | 0.307-1.324 | 0.002 | ||||
| UNet (vs others) | 0.986 | 0.558-1.415 | 0 | ||||
| Accuracy difference | Intercept | 0.107 | 0.043-0.17 | 0.001 | 0.002 | 51.4 | 2498.5 |
| WLE (vs others) | 0.059 | -0.022-0.14 | 0.157 | ||||
| UNet (vs others) | 0.051 | -0.029-0.131 | 0.212 |
- Citation: Li ZY, Liu YH, Cai HQ. Diagnostic value of real-time computer-aided detection for precancerous lesion during esophagogastroduodenoscopy: A meta-analysis. World J Gastrointest Surg 2025; 17(11): 109991
- URL: https://www.wjgnet.com/1948-9366/full/v17/i11/109991.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i11.109991
