BPG is committed to discovery and dissemination of knowledge
Meta-Analysis
Copyright ©The Author(s) 2025.
World J Gastrointest Surg. Nov 27, 2025; 17(11): 109991
Published online Nov 27, 2025. doi: 10.4240/wjgs.v17.i11.109991
Table 1 Main characteristics of 10 studies included in meta-analysis
Ref.
Year
Location
Ethnicity
Study design
Sample size
Type of lesion
Imaging modality
AI model for segmentation
Diagnostic power
Case
Control
Case
Control
TP
FP
FN
TN
TP
FP
FN
TN
van der Putten et al[11]2020NetherlandsCaucasianCohort8080Barrett’s neoplasiaBLIResNet37733329101130
Yan et al[12]2020ChinaAsianCohort8080GIMNBIEfficientNet B4346337328535
Struyvenberg et al[13]2021NetherlandsCaucasianCohort134134Barrett’s neoplasiaVLEVGG16361737827141281
Hussein et al[14]2022United KingdomCaucasianCohort6161Barrett’s neoplasiaWLEFCNResNet 502741292217616
Zhao et al[15]2022ChinaAsianCohort268268CAGNBIU-Net961013149662743132
Zhao et al[16]2022ChinaAsianPaired cohort study676676CAGWLEU-Net284105432821261126277
Abdelrahim et al[17]2023United KingdomCaucasianCohort7575Barrett’s neoplasiaWLESegNet30423920101233
Zhao et al[18]2023ChinaAsianPaired cohort study524524CAGNBIU-Net23425282371777885184
Meinikheim et al[19]2024GermanyCaucasianCohort9696Barrett’s neoplasiaMulti-modalDeepLab V3+4012113336151530
Tao et al[20]2024ChinaAsianCohort119119CAGWLEU-Net++7434385542337
Table 2 Technical characteristics of artificial intelligence-enhanced real-time computer-aided detection systems utilized in included studies
Ref.
Year
AI model type
Hardware configuration
Processing speed
Dataset size
Risk stratification tool
van der Putten et al[11]2020Integrated U-Net + Transfer LearningTitan Xp 12GB GPU< 2 sec/frame500000 framesNone
Yan et al[12]2020EfficientNetB4Not specified20 fps11000 framesNone
Struyvenberg et al[13]2021VGG16Not specified56 fps318 video casesNone
Hussein et al[14]2022ResNet101 + FCN ResNet50Not specified48-56 fps150000 framesNone
Zhao et al[15]2022U-NetNot specifiedNot specifiedNot specifiedNone
Zhao et al[16]2022U-NetGeForce RTX 309030 fpsNot specifiedNone
Abdelrahim et al[17]2022VGG16 + SegNet Hybrid ModelGeForce RTX 2080 Ti30 fpsTraining: 109071 frames; Testing: 75 video casesNone
Zhao et al[18]2023U-Net Extended ModelGeForce RTX 309030 fpsNot specifiedOLGA
Meinikheim et al[19]2024DeepLabV3+ + ResNet50 + Mean-TeacherNot specified30 fpsTraining: 51273 frames; Testing: 96 video casesNone
Tao et al[20]2024UNet++ + ResNet50 Dual Model SystemNot specifiedNot specifiedTraining: 119 video cases; Testing: 102 video casesKimura-Takemoto
Table 3 Subgroup analysis of diagnostic effect
Subgroup
No. studies
No. patients
Sensitivity (AI-CAD)
Specificity (AI-CAD)
Sensitivity (endoscopist)
Specificity (endoscopist)
Difference of accuracy
Difference of log (DOR)
Value
I2 (%)
P value
Value
I2 (%)
P value
Value
I2 (%)
P value
Value
I2 (%)
P value
Value
I2 (%)
P value
Value
I2 (%)
P value
Race
Asian516670.890 (95%CI: 0.837-0.928)53.00.0700.930 (95%CI: 0.891-0.956)70.80.0090.658 (95%CI: 0.618-0.696)43.90.0390.810 (95%CI: 0.723-0.874)75.30.0010.167 (95%CI: 0.112-0.221)22.90.118-0.355 (95%CI: -1.110 to 0.401)9.30.296
Others54460.896 (95%CI: 0.821-0.942)49.90.0830.831 (95%CI: 0.746-0.891)16.30.2760.703 (95%CI: 0.632-0.766)0.00.7460.721 (95%CI: 0.608-0.812)76.10.0020.142 (95%CI: 0.072-0.211)64.80.0220.151 (95%CI: -0.805 to 1.107)62.60.032
Number of patients
< 10053920.895 (95%CI: 0.819-0.941)49.20.0890.842 (95%CI: 0.741-0.909)31.40.2420.731 (95%CI: 0.660-0.791)17.60.2350.703 (95%CI: 0.594-0.793)64.00.0270.147 (95%CI: 0.074-0.220)60.20.0410.213 (95%CI: -0.756 to 1.182)60.30.035
≥ 100517210.891 (95%CI: 0.838-0.928)54.00.0660.922 (95%CI: 0.870-0.954)83.10.0000.650 (95%CI: 0.614-0.684)6.70.4320.816 (95%CI: 0.742-0.872)78.80.0000.163 (95%CI: 0.106-0.219)66.10.037-0.387 (95%CI: -1.112 to 0.339)3.40.306
Study design
Paired212000.868 (95%CI: 0.783-0.923)71.10.0630.944 (95%CI: 0.879-0.975)90.40.0010.650 (95%CI: 0.586-0.710)33.80.2190.766 (95%CI: 0.600-0.877)91.10.0010.196 (95%CI: 0.125-0.266)0.00.378-0.774 (95%CI: -1.475 to -0.073)0.00.536
Others89130.904 (95%CI: 0.856-0.937)44.00.1160.868 (95%CI: 0.803-0.913)57.70.0180.694 (95%CI: 0.640-0.743)30.10.1590.773 (95%CI: 0.684-0.842)75.20.0000.141 (95%CI: 0.092-0.189)56.80.0260.075 (95%CI: -0.542 to 0.693)40.50.101
Type of lesion
BE54460.896 (95%CI: 0.821-0.942)49.90.0830.831 (95%CI: 0.746-0.891)16.30.2760.703 (95%CI: 0.632-0.766)0.00.7460.721 (95%CI: 0.608-0.812)76.10.0020.142 (95%CI: 0.072-0.211)64.80.0220.151 (95%CI: -0.805 to 1.107)62.60.032
Others516670.890 (95%CI: 0.837-0.928)53.00.0700.930 (95%CI: 0.891-0.956)70.80.0090.658 (95%CI: 0.618-0.696)43.90.0390.810 (95%CI: 0.723-0.874)75.30.0010.167 (95%CI: 0.112-0.221)22.90.118-0.355 (95%CI: -1.110 to 0.401)9.30.296
Imaging modality
WLE49310.906 (95%CI: 0.835-0.949)63.00.0250.935 (95%CI: 0.877-0.967)59.70.0440.662 (95%CI: 0.596-0.722)26.10.2550.764 (95%CI: 0.634-0.858)88.10.0000.202 (95%CI: 0.134-0.269)0.10.4380.560 (95%CI: -0.458 to 1.579)65.30.020
Others611820.886 (95%CI: 0.827-0.926)26.80.2530.861 (95%CI: 0.790-0.911)73.10.0020.685 (95%CI: 0.630-0.735)31.30.1270.775 (95%CI: 0.679-0.849)66.30.0070.128 (95%CI: 0.074-0.183)69.10.005-0.530 (95%CI: -1.261 to 0.201)0.90.536
AI model for segmentation
U-Net415870.887 (95%CI: 0.828-0.927)59.70.0480.939 (95%CI: 0.904-0.961)69.10.0150.648 (95%CI: 0.611-0.682)11.00.3230.810 (95%CI: 0.710-0.881)83.20.0000.187 (95%CI: 0.155-0.220)0.00.735-0.376 (95%CI: -1.170 to 0.418)17.40.187
Others65260.900 (95%CI: 0.835-0.941)43.60.1190.834 (95%CI: 0.765-0.886)7.30.3580.724 (95%CI: 0.660-0.779)0.00.3270.737 (95%CI: 0.632-0.820)72.40.0020.118 (95%CI: 0.069-0.167)63.10.0210.093 (95%CI: -0.783 to 0.970)52.10.060
Table 4 Meta-regression examining the impact of imaging modality and artificial intelligence model on artificial intelligence-enhanced real-time computer-aided detection systems specificity and accuracy gain
Outcome
Covariate
β
95%CI
P value
τ2
I2 (%)
R2 (%)
SpecificityIntercept1.4181.099-1.73700010000
WLE (vs others)0.8160.307-1.3240.002
UNet (vs others)0.9860.558-1.4150
Accuracy differenceIntercept0.1070.043-0.170.0010.00251.42498.5
WLE (vs others)0.059-0.022-0.140.157
UNet (vs others)0.051-0.029-0.1310.212