Minireviews Open Access
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Surg. Jul 27, 2025; 17(7): 106724
Published online Jul 27, 2025. doi: 10.4240/wjgs.v17.i7.106724
Predicting neoadjuvant chemoradiotherapy response in rectal cancer: Insights from biomarkers to clinical practice
Hikmet Pehlevan-Özel, Department of Surgery, Ankara City Hospital, Ankara 06800, Türkiye
Eda Şahingöz, Department of General Surgery, University of Health Sciences, Ankara 06100, Türkiye
Mert Altaş, Department of Surgery, Ankara Bilkent City Hospital, Ankara 06800, Türkiye
Mesut Tez, Department of Surgery, University of Health Sciences, Ankara City Hospital, Ankara 06800, Türkiye
ORCID number: Hikmet Pehlevan-Özel (0000-0002-9146-3742); Eda Şahingöz (0009-0004-1773-3080); Mert Altaş (0009-0007-9807-8031); Mesut Tez (0000-0001-5282-9492).
Co-first authors: Hikmet Pehlevan-Özel and Eda Şahingöz.
Author contributions: Pehlevan-Özel H and Şahingöz E contributed equally to the conception and design of the study, data collection, and drafting of the manuscript; Altaş M participated in data analysis, interpretation, and critical revision of the manuscript for important intellectual content; Tez M supervised the project, contributed to the study design, provided surgical expertise, and finalized the manuscript; All authors read and approved the final version of the manuscript.
Conflict-of-interest statement: All authors report no relevant conflicts of interest for this article.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Mesut Tez, Professor, Department of Surgery, University of Health Sciences, Ankara City Hospital, No. 1 Bilkent Street, District of Universities, Ankara 06800, Türkiye. mesuttez@yahoo.com
Received: March 6, 2025
Revised: March 31, 2025
Accepted: May 19, 2025
Published online: July 27, 2025
Processing time: 140 Days and 4.3 Hours

Abstract

Rectal cancer poses a major global health challenge, with neoadjuvant chemoradiotherapy improving outcomes in locally advanced cases by reducing tumor burden and recurrence risk. However, response variability, including only 15%-20% of patients achieving pathological complete response, underscores the urgent need for accurate predictive tools. This review explored current and emerging biomarkers to enhance neoadjuvant chemoradiotherapy response prediction and inform clinical practice.

Key Words: Rectal cancer; Neoadjuvant chemoradiotherapy; Pathological complete response; Biomarkers; Tumor regression grading; Clinical predictors; Radiomics

Core Tip: This review synthesized biomarkers predicting neoadjuvant chemoradiotherapy response in rectal cancer, including clinical predictors (e.g., tumor size, nodal status), histopathological features (e.g., tumor regression grading), molecular markers (e.g., KRAS mutations), microenvironmental factors (e.g., tumor-infiltrating lymphocytes), and radiomics to guide personalized treatment and improve outcomes.



INTRODUCTION

The management of rectal cancer has evolved significantly with neoadjuvant therapies, driven by advances like total mesorectal excision (TME), which reduced local recurrence rates from up to 40% to 3.7% at 5 years[1]. Preoperative radiotherapy, established by trials like the Swedish Rectal Cancer Trial[2] and Dutch TME trial[3], further lowered recurrence (e.g., 2.4% vs 8.2% at 10 years with TME alone), though overall survival (OS) benefits remained elusive[4]. Chemoradiotherapy (nCRT) trials, such as the German Rectal Cancer Trial[5], confirmed the superiority of preoperative nCRT over postoperative treatment for local control (6% vs 13% at 5 years), but systemic relapse persisted. Magnetic resonance imaging-based staging, validated by the MERCURY trial[6], refined patient stratification, identifying high-risk features like cT3c/d, threatened mesorectal fascia, and extramural venous invasion for neoadjuvant therapy[7].

CURRENT STATUS OF NEOADJUVANT THERAPIES

Current indications vary, with North America favoring neoadjuvant therapy for cT1-2N+ tumors[8], while Europe reserves it for advanced cases[9]. Short-course radiotherapy (SCRT) and long-course nCRT show comparable local control, though nCRT may enhance R0 resection in mesorectal fascia-threatened cases[10]. Total neoadjuvant therapy (TNT), integrating full-dose chemotherapy preoperatively, as in the RAPIDO trial[11], reduced distant metastases (20% vs 27%), boosting pathological complete response (pCR) rates (28% vs 14%). Neoadjuvant chemotherapy trials like PROSPECT[12] suggest FOLFOX as a de-escalation option for intermediate-risk cases, achieving similar disease-free survival (DFS) to nCRT (80.8% vs 78.6% at 5 years). Nonoperative management post-nCRT or TNT, as in OPRA[13], preserved organs in over 50% of complete responders, maintaining oncological safety.

Future directions include immunotherapy for mismatch repair-deficient tumors, with trials like NICHE[14] showing 60% pCR rates and biomarkers like circulating tumor DNA for response prediction[15]. Gut microbiome studies also highlighted potential modulators of treatment response[16]. A systematic review and network meta-analysis by Turri et al[17] evaluated neoadjuvant treatments for locally advanced rectal cancer across 27 randomized clinical trials involving 13413 adults (median age 60 years, 67.2% male), comparing TNT protocols to standard long-course nCRT with single-agent fluoropyrimidine (L-CRT1). The primary outcome, pCR, showed TNT regimens outperforming L-CRT1. L-CRT plus consolidation chemotherapy (L-CRT + consolidation) had the highest effect [relative risk (RR): 1.96, 95% confidence interval (CI): 1.25-3.06)], followed by SCRT plus consolidation (S-RT + consolidation, RR: 1.76, 95%CI: 1.34-2.30) and induction chemotherapy plus L-CRT (RR: 1.57, 95%CI: 1.09-2.25)[17]. These TNT protocols achieved pCR rates of 18.6%-21.5% vs 14.3% for L-CRT1, with L-CRT + consolidation requiring treatment of 7.5 individuals for one additional pCR. Standard L-CRT1, recommended by guidelines[18], was less effective than TNT but outperformed neoadjuvant chemotherapy alone (RR: 0.75, 95%CI: 0.57-0.98) and SCRT with early resection (S-RTearly, RR: 0.07, 95%CI: 0.02-0.22).

TNT showed good tolerability, with S-RT + consolidation (RR: 0.90, 95%CI: 0.82-0.99) and L-CRT with duplex chemotherapy (L-CRT2, RR: 0.91, 95%CI: 0.86-0.97) slightly better than L-CRT1, though toxic effects were higher (e.g., S-RT + consolidation, RR: 2.01, 95%CI: 1.39-2.91)[17]. Surgical outcomes (e.g., R0 resection rates) were comparable across treatments, but S-RT + consolidation increased 5-year locoregional recurrence (RR: 1.65, 95%CI: 1.03-2.63) while improving 3-year DFS (RR: 1.08, 95%CI: 1.01-1.14)[11]. Induction + L-CRT also enhanced 3-year DFS (RR: 1.12, 95%CI: 1.01-1.24)[19]. The study suggests TNT protocols, particularly L-CRT + consolidation, should be first-line for maximizing pCR, supported by high-to-moderate evidence certainty[20], though long-term survival benefits require further data.

LIMITATIONS OF CURRENT RECOMMENDATIONS

While the RAPIDO trial by Bahadoer et al[11] and the meta-analysis by Turri et al[17] highlighted the short-term benefits of TNT protocols, particularly in achieving higher pCR rates, long-term survival data (e.g., 5-year OS) are not yet mature. The increased 5-year locoregional recurrence with S-RT + consolidation (RR: 1.65) raises concerns about its long-term efficacy despite improved 3-year DFS. Therefore, recommendations for TNT as a first-line regimen should be cautious, and future studies should prioritize long-term outcomes to confirm its superiority over traditional nCRT.

TUMOR REGRESSION GRADING SYSTEMS

Tumor regression grading (TRG) systems assess the histopathological response of gastrointestinal carcinomas to neoadjuvant therapy, providing insights into therapeutic efficacy and prognosis. Kim et al[21] investigated four TRG systems, American Joint Committee on Cancer, Dworak, Ryan, and a modified Dworak (mDworak), in 933 patients with rectal cancer treated with preoperative nCRT and curative resection. All systems significantly predicted recurrence-free survival (RFS) and OS (P < 0.001) with mDworak, which evaluates both primary tumor and regional lymph nodes, showing superior prognostic ability (χ2: 68.92, C-statistic: 0.6492 for RFS; 58.06, 0.6783 for OS) compared to American Joint Committee on Cancer (59.58, 0.6359; 53.95, 0.6718), Dworak (61.85, 0.6374; 55.52, 0.6711), and Ryan (59.57, 0.6356; 53.76, 0.6700), though differences were not statistically significant[21]. The mDworak system defines TRG 4 as complete regression (ypT0N0), TRG 3 as near-complete regression (< 0.5 cm foci), TRG 2 as moderate regression (> 50% fibroinflammatory changes), and TRG 1 as minimal regression (> 50% tumor mass), enhancing prediction when combined with ypStage (χ2 133.35, C-statistic 0.7248 for RFS; 97.33, 0.7482 for OS)[21].

In contrast Thies and Langer[22] reviewed TRG systems across gastrointestinal cancers, including Mandard, Becker, Dworak, and Rödel, emphasizing their histopathological basis-fibrosis vs residual tumor percentage and prognostic value. Mandard TRG 1-3 (complete to moderate regression) correlated with better DFS in esophageal cancer[23], while Becker TRG 1a-b (< 10% residual tumor) predicted improved survival in gastric cancer[24]. Dworak TRG 4 (no vital tumor cells) and Rödel TRG 4 (complete regression) also indicated favorable outcomes in rectal cancer[25,26]. Both studies highlight the prognostic significance of TRG, with complete regression (e.g., mDworak TRG 4, Becker TRG 1a) linked to better survival. Limitations like interobserver variability for mDworak showed high concordance (kappa 0.936)[21], while Mandard and Dworak had lower reproducibility (kappa 0.28-0.35)[27]. Thies and Langer[22] advocated for standardized specimen processing (e.g., embedding the entire tumor bed) and favored Becker’s percentage-based system for reproducibility (kappa 0.52). Together, these findings suggest that integrating lymph node assessment (mDworak) with primary tumor regression and adopting quantifiable criteria could optimize TRG systems for clinical use (Table 1).

Table 1 Tumor regression grading systems and prognostic value.
TRG system
Description
Prognostic value
Limitations
mDworakEvaluates primary tumor + regional LNs; TRG 4 = ypT0N0, TRG 3 = near-complete regressionBest predictor of RFS and OS (Kim et al[21]); C-statistic: 0.6492 (RFS), 0.6783 (OS)Requires LN assessment, less commonly used
AJCCTRG 0-3 scale (complete response to poor response)Predictive of survival (Kim et al[21]); C-statistic: 0.6359 (RFS), 0.6718 (OS)Moderate reproducibility
DworakTRG 4 = complete regression, TRG 1 = minimal regressionAssociated with survival, but lower reproducibility (Chetty et al[27])Interobserver variability (kappa 0.28-0.35)
RyanTRG 0-3 scale; used in multiple cancersPredictive of recurrence and survival (Kim et al[21])Similar performance to AJCC and Dworak
MandardTRG 1-5; based on fibrosis and residual tumorPredicts DFS in esophageal cancer (Mandard et al[23])Lower reproducibility compared to Becker (kappa 0.28)
BeckerTRG 1a-b (< 10% residual tumor) predictive of survivalHigh reproducibilityLess widely used outside gastric cancer
RödelTRG 4 = complete regressionFavorable outcomes in rectal cancer (Rödel et al[26])Requires histopathological expertise
CLINICAL PREDICTORS AND BIOMARKERS

Clinical predictors of pCR included smaller tumor size (< 4 cm), clinical node negativity (cN0), and well-differentiated histology, as identified by Turri et al[17] in a network meta-analysis of 27 randomized clinical trials involving 13413 patients with locally advanced rectal cancer. These clinical markers (tumor size, nodal status, and differentiation) were validated by multivariate analysis[28] and suggest that less aggressive tumor phenotypes benefit most from intensified neoadjuvant strategies, though long-term outcomes like 5-year locoregional recurrence (RR: 1.65 for S-RT + consolidation) require further exploration[11].

Li et al[29] expanded the marker landscape in their review, categorizing predictors into clinical, histopathological, molecular, and TME domains. Clinical predictors extended beyond the findings of Turri et al[17] to include tumor size (< 3 cm)[30], early clinical T stage (cT1-2)[31], distance from the anal verge (e.g., < 5 cm linked to better response in some studies)[32], and low pretreatment carcinoembryonic antigen (< 5 µg/L)[33]. Histopathologically, well-differentiated tumors[34], low tumor budding[35], and absence of lymphovascular or perineural invasion[36] predicted favorable nCRT response, while mucinous histology correlated with resistance[37].

MOLECULAR MARKERS: CLARIFYING CONTRADICTORY EVIDENCE

Molecular markers included protein expression levels (e.g., low RAD18[38], high MRP3[39], low TCF-4[40], and high Beclin 1[41]) as well as genetic alterations like KRAS mutations (resistance)[42] and TP53 status (variable predictive value)[43]. Regarding KRAS mutations, while Chow et al[42] reported an association with decreased response to nCRT, other studies have shown mixed results, with some finding no significant correlation[44]. Similarly, TP53 mutations have been linked to both resistance and sensitivity depending on the study[43,45]. A meta-analysis by Chen et al[43] found that TP53 mutations were associated with poorer response to nCRT (odds ratio: 0.57, 95%CI: 0.36-0.91), though heterogeneity among studies was noted (I² = 62%).

Epigenetic markers, such as CpG island methylator phenotype[44], and microRNAs (e.g., miR-21-5p overexpression)[46] further enriched molecular predictors. TME markers highlighted high CD8+ tumor-infiltrating lymphocytes[47], low FOXP3+ regulatory T cells[48], and low M2 macrophage density[49] as favorable, with gut microbiome diversity (e.g., enriched beneficial taxa) emerging as a novel predictor[50]. Patient-derived organoids mirrored clinical responses, offering a platform to validate these markers[51].

Jiang et al[52] integrated pretreatment magnetic resonance imaging radiomics (T2-weighting imaging and diffusion-weighted imaging) with clinical factors into a nomogram, achieving an area under the curve (AUC) of 0.99 (training) and 0.94 (validation) for TRG. Clinical predictors included low carcinoembryonic antigen (< 5 µg/L)[53], negative circumferential resection margin[6], high tumor differentiation[54], and absence of extramural venous invasion[55]. Radiomics extracted 32 features from combined T2-weighting imaging/diffusion-weighted imaging sequences, capturing tumor heterogeneity[56], and outperformed single-sequence (AUC 0.72-0.91) and clinical-only models (AUC 0.77-0.83). This comprehensive model enhanced TRG prediction (good responders: TRG 1-2; poor: TRG 3-5), supporting organ-preserving strategies[57] or intensified therapy for non-responders.

LIMITATIONS OF THE JIANG MODEL

However, the high AUC (0.99 in training) of the Jiang model may overestimate its clinical universality due to potential overfitting, as the sample size and heterogeneity of the external validation cohort were not detailed. Smaller validation cohorts or lack of diverse patient populations could limit generalizability. Future studies should include larger, multicenter validations to confirm these findings. These findings are summarized in Table 2.

Table 2 Biomarkers for predicting neoadjuvant chemoradiotherapy response.
Category
Predictors
Key findings
Clinical markersTumor size (< 4 cm), clinical node negativity (cN0), well-differentiated histologyAssociated with higher pCR rates (Turri et al[17])
Distance to anal verge (< 5 cm), low pretreatment CEA (< 5 µg/L)Favorable response predictors (Peng et al[33]; Shao et al[32])
Histopathological markersLow tumor budding, absence of LVI and PNICorrelates with better nCRT response (Agarwal et al[36]; Rogers et al[35])
Mucinous histologyLinked to treatment resistance (Simha et al[37])
Molecular markersKRAS mutations (resistance), TP53 status (variable), low RAD18, high Beclin 1Genetic alterations impact therapy sensitivity (Chow et al[42]; Zaanan et al[41])
Epigenetics: CpG island methylation, microRNAs (e.g., miR-21-5p overexpression)Influence gene expression and therapy resistance (Jo et al[44]; Lopes-Ramos et al[46])
Tumor microenvironmentHigh CD8+ TILs, low FOXP3+ Tregs, low M2 macrophage densityFavorable immune landscape (McCoy et al[48]; Shabo et al[49])
Gut microbiome diversityEmerging predictor of response (Yi et al[50])
Radiological biomarkersMRI-based radiomics (T2WI, DWI), CRM, EMVIMRI features enhance response prediction (Jiang et al[52]; Taylor et al[6])
PET-based metabolic responseFunctional assessment of tumor viability post-nCRT
CHALLENGES IN THE CLINICAL APPLICATION OF BIOMARKERS

While biomarkers hold promise for predicting nCRT response, their clinical application faces several challenges.

Detection standardization

Variability in biomarker assays (e.g., immunohistochemistry for tumor-infiltrating lymphocytes) and lack of standardized cutoffs limit reproducibility across laboratories[27].

Cost-effectiveness

Multiomic testing (e.g., genomics, proteomics) is expensive, potentially restricting access in resource-limited settings. A cost-effectiveness analysis by Widmar et al[58] estimated that biomarker-driven nCRT personalization could increase costs by 15%-20%, though long-term savings from reduced recurrence may offset this. Simplified models using fewer biomarkers or clinical predictors alone could enhance feasibility.

Ethical issues

Biomarker-based treatment decisions raise concerns about equity, particularly if access to testing is unequal. Additionally, false positives/negatives in prediction models could lead to overtreatment or undertreatment, necessitating robust validation.

Addressing these challenges requires international collaboration to standardize assays, develop cost-effective testing platforms, and ensure equitable access to personalized care.

CLINICAL IMPLICATIONS AND FUTURE DIRECTIONS

Despite promising advances biomarker-based prediction models have not yet been widely adopted in clinical practice. Future research should focus on: (1) Integration of multiomic data (genomics, proteomics, radiomics) for enhanced predictive accuracy; (2) Prospective validation of biomarker-driven treatment algorithms to personalize rectal cancer management; (3) Cost-effectiveness studies to assess the economic feasibility of biomarker testing, especially in resource-limited settings; and (4) Long-term survival data to confirm the benefits of intensified neoadjuvant strategies like TNT.

CONCLUSION

Predicting nCRT response in rectal cancer remains an area of active investigation. Histopathological markers, alongside molecular and imaging biomarkers, hold potential in guiding treatment decisions. Incorporating these biomarkers into routine practice could refine patient stratification, leading to improved outcomes and reduced treatment morbidity. However, challenges in standardization, cost, and ethical considerations must be addressed to ensure broad clinical applicability.

ACKNOWLEDGEMENTS

The authors thank the Ankara City Hospital for institutional support.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Oncology

Country of origin: Türkiye

Peer-review report’s classification

Scientific Quality: Grade A, Grade A, Grade A

Novelty: Grade A, Grade A, Grade B

Creativity or Innovation: Grade A, Grade A, Grade B

Scientific Significance: Grade A, Grade A, Grade A

P-Reviewer: Ogino S; Wang R S-Editor: Li L L-Editor: Filipodia P-Editor: Zhao YQ

References
1.  Heald RJ, Ryall RD. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet. 1986;1:1479-1482.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1867]  [Cited by in RCA: 1909]  [Article Influence: 48.9]  [Reference Citation Analysis (0)]
2.  Swedish Rectal Cancer Trial, Cedermark B, Dahlberg M, Glimelius B, Påhlman L, Rutqvist LE, Wilking N. Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med. 1997;336:980-987.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1848]  [Cited by in RCA: 1814]  [Article Influence: 64.8]  [Reference Citation Analysis (0)]
3.  Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van Krieken JH, Leer JW, van de Velde CJ; Dutch Colorectal Cancer Group. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345:638-646.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 3104]  [Cited by in RCA: 3110]  [Article Influence: 129.6]  [Reference Citation Analysis (0)]
4.  van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, Rutten HJ, Påhlman L, Glimelius B, van de Velde CJ; Dutch Colorectal Cancer Group. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 2011;12:575-582.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1138]  [Cited by in RCA: 1340]  [Article Influence: 95.7]  [Reference Citation Analysis (0)]
5.  Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch T, Schmidberger H, Raab R; German Rectal Cancer Study Group. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351:1731-1740.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 4342]  [Cited by in RCA: 4453]  [Article Influence: 212.0]  [Reference Citation Analysis (1)]
6.  Taylor FG, Quirke P, Heald RJ, Moran BJ, Blomqvist L, Swift IR, Sebag-Montefiore D, Tekkis P, Brown G; Magnetic Resonance Imaging in Rectal Cancer European Equivalence Study Study Group. Preoperative magnetic resonance imaging assessment of circumferential resection margin predicts disease-free survival and local recurrence: 5-year follow-up results of the MERCURY study. J Clin Oncol. 2014;32:34-43.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 354]  [Cited by in RCA: 440]  [Article Influence: 36.7]  [Reference Citation Analysis (0)]
7.  Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, Fenlon HM, Gollub MJ, Gourtsoyianni S, Halligan S, Hoeffel C, Kim SH, Laghi A, Maier A, Rafaelsen SR, Stoker J, Taylor SA, Torkzad MR, Blomqvist L. Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol. 2018;28:1465-1475.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 331]  [Cited by in RCA: 600]  [Article Influence: 75.0]  [Reference Citation Analysis (0)]
8.  Benson AB, Venook AP, Al-Hawary MM, Azad N, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Garrido-Laguna I, Grem JL, Gunn A, Hecht JR, Hoffe S, Hubbard J, Hunt S, Jeck W, Johung KL, Kirilcuk N, Krishnamurthi S, Maratt JK, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stotsky-Himelfarb E, Tavakkoli A, Willett CG, Gregory K, Gurski L. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20:1139-1167.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 448]  [Cited by in RCA: 398]  [Article Influence: 132.7]  [Reference Citation Analysis (0)]
9.  Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, Arnold D; ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:iv263.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 151]  [Cited by in RCA: 291]  [Article Influence: 41.6]  [Reference Citation Analysis (0)]
10.  Braendengen M, Tveit KM, Berglund A, Birkemeyer E, Frykholm G, Påhlman L, Wiig JN, Byström P, Bujko K, Glimelius B. Randomized phase III study comparing preoperative radiotherapy with chemoradiotherapy in nonresectable rectal cancer. J Clin Oncol. 2008;26:3687-3694.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 324]  [Cited by in RCA: 342]  [Article Influence: 20.1]  [Reference Citation Analysis (0)]
11.  Bahadoer RR, Dijkstra EA, van Etten B, Marijnen CAM, Putter H, Kranenbarg EM, Roodvoets AGH, Nagtegaal ID, Beets-Tan RGH, Blomqvist LK, Fokstuen T, Ten Tije AJ, Capdevila J, Hendriks MP, Edhemovic I, Cervantes A, Nilsson PJ, Glimelius B, van de Velde CJH, Hospers GAP; RAPIDO collaborative investigators. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:29-42.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 458]  [Cited by in RCA: 945]  [Article Influence: 236.3]  [Reference Citation Analysis (0)]
12.  Schrag D, Shi Q, Weiser MR, Gollub MJ, Saltz LB, Musher BL, Goldberg J, Al Baghdadi T, Goodman KA, McWilliams RR, Farma JM, George TJ, Kennecke HF, Shergill A, Montemurro M, Nelson GD, Colgrove B, Gordon V, Venook AP, O'Reilly EM, Meyerhardt JA, Dueck AC, Basch E, Chang GJ, Mamon HJ. Preoperative Treatment of Locally Advanced Rectal Cancer. N Engl J Med. 2023;389:322-334.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 276]  [Cited by in RCA: 230]  [Article Influence: 115.0]  [Reference Citation Analysis (0)]
13.  Garcia-Aguilar J, Patil S, Gollub MJ, Kim JK, Yuval JB, Thompson HM, Verheij FS, Omer DM, Lee M, Dunne RF, Marcet J, Cataldo P, Polite B, Herzig DO, Liska D, Oommen S, Friel CM, Ternent C, Coveler AL, Hunt S, Gregory A, Varma MG, Bello BL, Carmichael JC, Krauss J, Gleisner A, Paty PB, Weiser MR, Nash GM, Pappou E, Guillem JG, Temple L, Wei IH, Widmar M, Lin S, Segal NH, Cercek A, Yaeger R, Smith JJ, Goodman KA, Wu AJ, Saltz LB. Organ Preservation in Patients With Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy. J Clin Oncol. 2022;40:2546-2556.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 409]  [Cited by in RCA: 512]  [Article Influence: 170.7]  [Reference Citation Analysis (0)]
14.  Chalabi M, Fanchi LF, Dijkstra KK, Van den Berg JG, Aalbers AG, Sikorska K, Lopez-Yurda M, Grootscholten C, Beets GL, Snaebjornsson P, Maas M, Mertz M, Veninga V, Bounova G, Broeks A, Beets-Tan RG, de Wijkerslooth TR, van Lent AU, Marsman HA, Nuijten E, Kok NF, Kuiper M, Verbeek WH, Kok M, Van Leerdam ME, Schumacher TN, Voest EE, Haanen JB. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med. 2020;26:566-576.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 341]  [Cited by in RCA: 883]  [Article Influence: 176.6]  [Reference Citation Analysis (0)]
15.  Tie J, Cohen JD, Wang Y, Li L, Christie M, Simons K, Elsaleh H, Kosmider S, Wong R, Yip D, Lee M, Tran B, Rangiah D, Burge M, Goldstein D, Singh M, Skinner I, Faragher I, Croxford M, Bampton C, Haydon A, Jones IT, S Karapetis C, Price T, Schaefer MJ, Ptak J, Dobbyn L, Silliman N, Kinde I, Tomasetti C, Papadopoulos N, Kinzler K, Volgestein B, Gibbs P. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: a prospective biomarker study. Gut. 2019;68:663-671.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 269]  [Cited by in RCA: 271]  [Article Influence: 45.2]  [Reference Citation Analysis (0)]
16.  Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017;170:548-563.e16.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 814]  [Cited by in RCA: 1456]  [Article Influence: 182.0]  [Reference Citation Analysis (0)]
17.  Turri G, Ostuzzi G, Vita G, Barresi V, Scarpa A, Milella M, Mazzarotto R, Ruzzenente A, Barbui C, Pedrazzani C. Treatment of Locally Advanced Rectal Cancer in the Era of Total Neoadjuvant Therapy: A Systematic Review and Network Meta-Analysis. JAMA Netw Open. 2024;7:e2414702.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 12]  [Reference Citation Analysis (0)]
18.  Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, Arnold D; ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv22-iv40.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1112]  [Cited by in RCA: 1190]  [Article Influence: 148.8]  [Reference Citation Analysis (0)]
19.  Conroy T, Bosset JF, Etienne PL, Rio E, François É, Mesgouez-Nebout N, Vendrely V, Artignan X, Bouché O, Gargot D, Boige V, Bonichon-Lamichhane N, Louvet C, Morand C, de la Fouchardière C, Lamfichekh N, Juzyna B, Jouffroy-Zeller C, Rullier E, Marchal F, Gourgou S, Castan F, Borg C; Unicancer Gastrointestinal Group and Partenariat de Recherche en Oncologie Digestive (PRODIGE) Group. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:702-715.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 175]  [Cited by in RCA: 719]  [Article Influence: 179.8]  [Reference Citation Analysis (0)]
20.  Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M, Salanti G. CINeMA: An approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020;17:e1003082.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 1002]  [Cited by in RCA: 908]  [Article Influence: 181.6]  [Reference Citation Analysis (0)]
21.  Kim SH, Chang HJ, Kim DY, Park JW, Baek JY, Kim SY, Park SC, Oh JH, Yu A, Nam BH. What Is the Ideal Tumor Regression Grading System in Rectal Cancer Patients after Preoperative Chemoradiotherapy? Cancer Res Treat. 2016;48:998-1009.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 62]  [Cited by in RCA: 95]  [Article Influence: 9.5]  [Reference Citation Analysis (0)]
22.  Thies S, Langer R. Tumor regression grading of gastrointestinal carcinomas after neoadjuvant treatment. Front Oncol. 2013;3:262.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 82]  [Cited by in RCA: 106]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
23.  Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, Roussel A, Jacob JH, Segol P, Samama G. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer. 1994;73:2680-2686.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 25]  [Reference Citation Analysis (0)]
24.  Becker K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R, Böttcher K, Siewert JR, Höfler H. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer. 2003;98:1521-1530.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 463]  [Cited by in RCA: 585]  [Article Influence: 26.6]  [Reference Citation Analysis (0)]
25.  Dworak O, Keilholz L, Hoffmann A. Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis. 1997;12:19-23.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 995]  [Cited by in RCA: 1060]  [Article Influence: 37.9]  [Reference Citation Analysis (1)]
26.  Rödel C, Martus P, Papadoupolos T, Füzesi L, Klimpfinger M, Fietkau R, Liersch T, Hohenberger W, Raab R, Sauer R, Wittekind C. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23:8688-8696.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 918]  [Cited by in RCA: 950]  [Article Influence: 47.5]  [Reference Citation Analysis (0)]
27.  Chetty R, Gill P, Govender D, Bateman A, Chang HJ, Deshpande V, Driman D, Gomez M, Greywoode G, Jaynes E, Lee CS, Locketz M, Rowsell C, Rullier A, Serra S, Shepherd N, Szentgyorgyi E, Vajpeyi R, Wang LM, Bateman A. International study group on rectal cancer regression grading: interobserver variability with commonly used regression grading systems. Hum Pathol. 2012;43:1917-1923.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 70]  [Cited by in RCA: 80]  [Article Influence: 6.2]  [Reference Citation Analysis (0)]
28.  Shin JK, Huh JW, Lee WY, Yun SH, Kim HC, Cho YB, Park YA. Clinical prediction model of pathological response following neoadjuvant chemoradiotherapy for rectal cancer. Sci Rep. 2022;12:7145.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in RCA: 30]  [Reference Citation Analysis (0)]
29.  Li M, Xiao Q, Venkatachalam N, Hofheinz RD, Veldwijk MR, Herskind C, Ebert MP, Zhan T. Predicting response to neoadjuvant chemoradiotherapy in rectal cancer: from biomarkers to tumor models. Ther Adv Med Oncol. 2022;14:17588359221077972.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 27]  [Cited by in RCA: 32]  [Article Influence: 10.7]  [Reference Citation Analysis (0)]
30.  Bitterman DS, Resende Salgado L, Moore HG, Sanfilippo NJ, Gu P, Hatzaras I, Du KL. Predictors of Complete Response and Disease Recurrence Following Chemoradiation for Rectal Cancer. Front Oncol. 2015;5:286.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 34]  [Cited by in RCA: 55]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
31.  Hammarström K, Imam I, Mezheyeuski A, Ekström J, Sjöblom T, Glimelius B. A Comprehensive Evaluation of Associations Between Routinely Collected Staging Information and The Response to (Chemo)Radiotherapy in Rectal Cancer. Cancers (Basel). 2020;13:16.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 8]  [Cited by in RCA: 28]  [Article Influence: 5.6]  [Reference Citation Analysis (0)]
32.  Shao K, Zheng R, Li A, Li X, Xu B. Clinical predictors of pathological good response in locally advanced rectal cancer. Radiat Oncol. 2021;16:10.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 3]  [Cited by in RCA: 9]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
33.  Peng H, Wang C, Xiao W, Lin X, You K, Dong J, Wang Z, Yu X, Zeng Z, Zhou T, Gao Y, Wen B. Analysis of Clinical characteristics to predict pathologic complete response for patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. J Cancer. 2018;9:2687-2692.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 10]  [Cited by in RCA: 24]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
34.  Huh JW, Kim HR, Kim YJ. Clinical prediction of pathological complete response after preoperative chemoradiotherapy for rectal cancer. Dis Colon Rectum. 2013;56:698-703.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 73]  [Cited by in RCA: 90]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
35.  Rogers AC, Gibbons D, Hanly AM, Hyland JM, O'Connell PR, Winter DC, Sheahan K. Prognostic significance of tumor budding in rectal cancer biopsies before neoadjuvant therapy. Mod Pathol. 2014;27:156-162.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 86]  [Cited by in RCA: 96]  [Article Influence: 8.7]  [Reference Citation Analysis (0)]
36.  Agarwal A, Chang GJ, Hu CY, Taggart M, Rashid A, Park IJ, You YN, Das P, Krishnan S, Crane CH, Rodriguez-Bigas M, Skibber J, Ellis L, Eng C, Kopetz S, Maru DM. Quantified pathologic response assessed as residual tumor burden is a predictor of recurrence-free survival in patients with rectal cancer who undergo resection after neoadjuvant chemoradiotherapy. Cancer. 2013;119:4231-4241.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 43]  [Cited by in RCA: 45]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
37.  Simha V, Kapoor R, Gupta R, Bahl A, Nada R. Mucinous adenocarcinoma of the rectum: a poor candidate for neo-adjuvant chemoradiation? J Gastrointest Oncol. 2014;5:276-279.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 20]  [Reference Citation Analysis (0)]
38.  Yan X, Chen J, Meng Y, He C, Zou S, Li P, Chen M, Wu J, Ding WQ, Zhou J. RAD18 may function as a predictor of response to preoperative concurrent chemoradiotherapy in patients with locally advanced rectal cancer through caspase-9-caspase-3-dependent apoptotic pathway. Cancer Med. 2019;8:3094-3104.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 8]  [Cited by in RCA: 16]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
39.  Yu Z, Zhang C, Wang H, Xing J, Gong H, Yu E, Zhang W, Zhang X, Cao G, Fu C. Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway. Cancer Lett. 2014;353:182-193.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 25]  [Cited by in RCA: 29]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
40.  Dou X, Wang R, Meng X, Yan H, Jiang S, Zhu K, Xu X, Chen D, Song X, Mu D. The prognostic role of TCF4 expression in locally advanced rectal cancer patients treated with neoadjuvant chemoradiotherapy. Cancer Biomark. 2015;15:181-188.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 5]  [Cited by in RCA: 9]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
41.  Zaanan A, Park JM, Tougeron D, Huang S, Wu TT, Foster NR, Sinicrope FA. Association of beclin 1 expression with response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. Int J Cancer. 2015;137:1498-1502.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 18]  [Cited by in RCA: 20]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
42.  Chow OS, Kuk D, Keskin M, Smith JJ, Camacho N, Pelossof R, Chen CT, Chen Z, Avila K, Weiser MR, Berger MF, Patil S, Bergsland E, Garcia-Aguilar J. KRAS and Combined KRAS/TP53 Mutations in Locally Advanced Rectal Cancer are Independently Associated with Decreased Response to Neoadjuvant Therapy. Ann Surg Oncol. 2016;23:2548-2555.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 55]  [Cited by in RCA: 76]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
43.  Chen MB, Wu XY, Yu R, Li C, Wang LQ, Shen W, Lu PH. P53 status as a predictive biomarker for patients receiving neoadjuvant radiation-based treatment: a meta-analysis in rectal cancer. PLoS One. 2012;7:e45388.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 50]  [Cited by in RCA: 70]  [Article Influence: 5.4]  [Reference Citation Analysis (0)]
44.  Jo P, Jung K, Grade M, Conradi LC, Wolff HA, Kitz J, Becker H, Rüschoff J, Hartmann A, Beissbarth T, Müller-Dornieden A, Ghadimi M, Schneider-Stock R, Gaedcke J. CpG island methylator phenotype infers a poor disease-free survival in locally advanced rectal cancer. Surgery. 2012;151:564-570.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 37]  [Cited by in RCA: 39]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
45.  Kandioler D, Zwrtek R, Ludwig C, Janschek E, Ploner M, Hofbauer F, Kührer I, Kappel S, Wrba F, Horvath M, Karner J, Renner K, Bergmann M, Karner-Hanusch J, Pötter R, Jakesz R, Teleky B, Herbst F. TP53 genotype but not p53 immunohistochemical result predicts response to preoperative short-term radiotherapy in rectal cancer. Ann Surg. 2002;235:493-498.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 63]  [Cited by in RCA: 71]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
46.  Lopes-Ramos CM, Habr-Gama A, Quevedo Bde S, Felício NM, Bettoni F, Koyama FC, Asprino PF, Galante PA, Gama-Rodrigues J, Camargo AA, Perez RO, Parmigiani RB. Overexpression of miR-21-5p as a predictive marker for complete tumor regression to neoadjuvant chemoradiotherapy in rectal cancer patients. BMC Med Genomics. 2014;7:68.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 47]  [Cited by in RCA: 55]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
47.  Matsutani S, Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Hirakawa K, Ohira M. Significance of tumor-infiltrating lymphocytes before and after neoadjuvant therapy for rectal cancer. Cancer Sci. 2018;109:966-979.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 61]  [Cited by in RCA: 94]  [Article Influence: 13.4]  [Reference Citation Analysis (0)]
48.  McCoy MJ, Hemmings C, Miller TJ, Austin SJ, Bulsara MK, Zeps N, Nowak AK, Lake RA, Platell CF. Low stromal Foxp3+ regulatory T-cell density is associated with complete response to neoadjuvant chemoradiotherapy in rectal cancer. Br J Cancer. 2015;113:1677-1686.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Full Text (PDF)]  [Cited by in Crossref: 49]  [Cited by in RCA: 63]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
49.  Shabo I, Olsson H, Sun XF, Svanvik J. Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer. 2009;125:1826-1831.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 99]  [Cited by in RCA: 122]  [Article Influence: 7.6]  [Reference Citation Analysis (0)]
50.  Yi Y, Shen L, Shi W, Xia F, Zhang H, Wang Y, Zhang J, Wang Y, Sun X, Zhang Z, Zou W, Yang W, Zhang L, Zhu J, Goel A, Ma Y, Zhang Z. Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study. Clin Cancer Res. 2021;27:1329-1340.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 132]  [Cited by in RCA: 121]  [Article Influence: 30.3]  [Reference Citation Analysis (0)]
51.  Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, Guo Q, Gao X, Li Y, Rao X, Zhou Y, Liang L, Wang Y, Zhang J, Zhang H, Li G, Zhang L, Peng J, Cai S, Hu C, Gao J, Clevers H, Zhang Z, Hua G. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell. 2020;26:17-26.e6.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 233]  [Cited by in RCA: 455]  [Article Influence: 91.0]  [Reference Citation Analysis (0)]
52.  Jiang H, Guo W, Yu Z, Lin X, Zhang M, Jiang H, Zhang H, Sun Z, Li J, Yu Y, Zhao S, Hu H. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer. Acad Radiol. 2023;30 Suppl 1:S185-S198.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 12]  [Reference Citation Analysis (0)]
53.  Chung MJ, Nam TK, Jeong JU, Kim SH, Kim K, Jang HS, Jeong BK, Lee JH. Can serum dynamics of carcinoembryonic antigen level during neoadjuvant chemoradiotherapy in rectal cancer predict tumor response and recurrence? A multi-institutional retrospective study. Int J Colorectal Dis. 2016;31:1595-1601.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 10]  [Cited by in RCA: 14]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]
54.  García-Flórez LJ, Gómez-Álvarez G, Frunza AM, Barneo-Serra L, Martínez-Alonso C, Fresno-Forcelledo MF. Predictive markers of response to neoadjuvant therapy in rectal cancer. J Surg Res. 2015;194:120-126.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 26]  [Cited by in RCA: 32]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
55.  Al-Sukhni E, Attwood K, Mattson DM, Gabriel E, Nurkin SJ. Predictors of Pathologic Complete Response Following Neoadjuvant Chemoradiotherapy for Rectal Cancer. Ann Surg Oncol. 2016;23:1177-1186.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 72]  [Cited by in RCA: 107]  [Article Influence: 10.7]  [Reference Citation Analysis (0)]
56.  Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749-762.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1825]  [Cited by in RCA: 3530]  [Article Influence: 441.3]  [Reference Citation Analysis (0)]
57.  Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo LJ, Calvo FA, García-Aguilar J, Glynne-Jones R, Haustermans K, Mohiuddin M, Pucciarelli S, Small W Jr, Suárez J, Theodoropoulos G, Biondo S, Beets-Tan RG, Beets GL. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835-844.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in Crossref: 1189]  [Cited by in RCA: 1454]  [Article Influence: 96.9]  [Reference Citation Analysis (0)]
58.  Widmar M, McCain M, Mishra Meza A, Ternent C, Briggs A, Garcia-Aguilar J. Cost-Effectiveness of Total Neoadjuvant Therapy With Selective Nonoperative Management for Locally Advanced Rectal Cancer: Analysis of Data From the Organ Preservation for Rectal Adenocarcinoma Trial. J Clin Oncol. 2025;43:672-681.  [RCA]  [PubMed]  [DOI]  [Full Text]  [Cited by in RCA: 2]  [Reference Citation Analysis (0)]