Topic Highlight
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Jun 15, 2014; 5(3): 258-266
Published online Jun 15, 2014. doi: 10.4239/wjd.v5.i3.258
Impact of hypoglycemic agents on myocardial ischemic preconditioning
Rosa Maria Rahmi Garcia, Paulo Cury Rezende, Whady Hueb
Rosa Maria Rahmi Garcia, Paulo Cury Rezende, Whady Hueb, MASS Study Group, Heart Institute of the University of São Paulo, São Paulo 05403-000, Brazil
Author contributions: All the authors contribute equally to this work.
Supported by Zerbini Foundation
Correspondence to: Whady Hueb, MD, PhD, MASS Study Group, Heart Institute of the University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 44, AB, Sala 114, Cerqueira Cesar, São Paulo 05403-000, Brazil. mass@incor.usp.br
Telephone: +55-11-26615032 Fax: +55-11-26615352
Received: November 27, 2013
Revised: March 13, 2014
Accepted: March 17, 2014
Published online: June 15, 2014
Processing time: 200 Days and 17.4 Hours
Abstract

Murry et al in 1986 discovered the intrinsic mechanism of profound protection called ischemic preconditioning. The complex cellular signaling cascades underlying this phenomenon remain controversial and are only partially understood. However, evidence suggests that adenosine, released during the initial ischemic insult, activates a variety of G protein-coupled agonists, such as opioids, bradykinin, and catecholamines, resulting in the activation of protein kinases, especially protein kinase C (PKC). This leads to the translocation of PKC from the cytoplasm to the sarcolemma, where it stimulates the opening of the ATP-sensitive K+ channel, which confers resistance to ischemia. It is known that a range of different hypoglycemic agents that activate the same signaling cascades at various cellular levels can interfere with protection from ischemic preconditioning. This review examines the effects of several hypoglycemic agents on myocardial ischemic preconditioning in animal studies and clinical trials.

Keywords: Ischemic preconditioning; Myocardial ischemia; Coronary artery disease; Hypoglycemic agents; Diabetes mellitus