Topic Highlight
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Jun 15, 2014; 5(3): 244-257
Published online Jun 15, 2014. doi: 10.4239/wjd.v5.i3.244
Defect of insulin signal in peripheral tissues: Important role of ceramide
Rima Hage Hassan, Olivier Bourron, Eric Hajduch
Rima Hage Hassan, Olivier Bourron, Eric Hajduch, INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
Rima Hage Hassan, Olivier Bourron, Eric Hajduch, Université Pierre et Marie Curie-Paris 6, UMR-S 872, F-75006 Paris, France
Rima Hage Hassan, Olivier Bourron, Eric Hajduch, Université Paris Descartes, UMR-S 872, F-75006 Paris, France
Olivier Bourron, Department de Diabétologie et Maladies métaboliques, AP-HP, Hôpital Pitié-Salpêtrière, F-75006 Paris, France
Author contributions: Hage Hassan R, Bourron O and Hajduch E were involved in collecting the required publications about the review and editing the manuscript; Hajduch E organized the structure of the review and wrote the manuscript.
Supported by INSERM, the Société Francophone du Diabète and from an Agence Nationale de la Recherche grant project (Crisalis)
Correspondence to: Eric Hajduch, Assistant Professor, INSERM, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France. eric.hajduch@crc.jussieu.fr
Telephone: +33-1-44272431 Fax: +33-1-44272427
Received: December 12, 2013
Revised: January 29, 2014
Accepted: May 8, 2014
Published online: June 15, 2014
Processing time: 185 Days and 18.5 Hours
Abstract

In healthy people, balance between glucose production and its utilization is precisely controlled. When circulating glucose reaches a critical threshold level, pancreatic β cells secrete insulin that has two major actions: to lower circulating glucose levels by facilitating its uptake mainly into skeletal muscle while inhibiting its production by the liver. Interestingly, dietary triglycerides are the main source of fatty acids to fulfill energy needs of oxidative tissues. Normally, the unconsumed fraction of excess of fatty acids is stored in lipid droplets that are localized in adipocytes to provide energy during fasting periods. Thus, adipose tissue acts as a trap for fatty acid excess liberated from plasma triglycerides. When the buffering action of adipose tissue to store fatty acids is impaired, fatty acids that build up in other tissues are metabolized as sphingolipid derivatives such as ceramides. Several studies suggest that ceramides are among the most active lipid second messengers to inhibit the insulin signaling pathway and this review describes the major role played by ceramide accumulation in the development of insulin resistance of peripherals tissues through the targeting of specific proteins of the insulin signaling pathway.

Keywords: Diabetes; Insulin resistance; Lipids; Insulin signaling; Triglycerides; Palmitate; Sphingolipid; Akt; Ceramide synthase; Protein phosphatase 2A; Protein kinase C ζ/λ

Core tip: Muscle and liver represent major sites for insulin-mediated glucose metabolism. The ability of insulin to promote its peripheral action is reduced significantly by excess of saturated fat that stimulates intracellular production of second-messenger lipids such as ceramide. Studies suggest that ceramide could be important contributors to lipotoxicity, as the inhibition of early steps its biosynthesis pathway has large beneficial effects in rodent models of obesity and diabetes. In this review, we describe mechanisms by which ceramide acts on insulin-sensitive tissues and we propose that targeting this lipid family could be an interesting approach to fight diabetes.