Editorial
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Diabetes. Sep 15, 2024; 15(9): 1847-1852
Published online Sep 15, 2024. doi: 10.4239/wjd.v15.i9.1847
Macrophage modulation with dipeptidyl peptidase-4 inhibitors: A new frontier for treating diabetic cardiomyopathy?
Saeed Mohammadi, Ahmed Al-Harrasi
Saeed Mohammadi, Ahmed Al-Harrasi, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
Ahmed Al-Harrasi, Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa 616, Oman
Author contributions: Mohammadi S and Al-Harrasi A designed the overall concept and outline of the manuscript, and contributed to writing and editing the manuscript, illustrations, and review of the literature.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ahmed Al-Harrasi, PhD, Full Professor, Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, PO Box 33, Nizwa 616, Oman. aharrasi@unizwa.edu.om
Received: April 1, 2024
Revised: May 13, 2024
Accepted: June 13, 2024
Published online: September 15, 2024
Processing time: 148 Days and 10.4 Hours
Abstract

This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy (DCM) treatment by dipeptidyl peptidase-4 (DPP-4) inhibitors. Zhang et al studied teneligliptin, a DPP-4 inhibitor used for diabetes management, and its potential cardioprotective effects in a diabetic mouse model. They suggested teneligliptin administration may reverse established markers of DCM, including cardiac hypertrophy and compromised function. It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice. Macrophages play crucial roles in DCM pathogenesis. Chronic hyperglycemia disturbs the balance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, favoring a pro-inflammatory state contributing to heart damage. Here, we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment. These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome. Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients.

Keywords: Diabetic cardiomyopathy; Macrophage; Dipeptidyl peptidase-4 inhibitor; Teneligliptin; NLRP3 inflammasome; Glucagon-like peptide-1

Core Tip: Targeting macrophage function could be introduced as a new approach for managing diabetic cardiomyopathy. Chronic hyperglycemia interrupts the balance between pro-inflammatory and anti-inflammatory subtypes of macrophages, promoting inflammation and tissue damage. The dipeptidyl peptidase-4 inhibitors, used for diabetes, might offer cardioprotective benefits by influencing macrophage activity and promoting an anti-inflammatory environment.