Published online Nov 15, 2022. doi: 10.4239/wjd.v13.i11.949
Peer-review started: August 28, 2022
First decision: September 12, 2022
Revised: September 25, 2022
Accepted: November 2, 2022
Article in press: November 2, 2022
Published online: November 15, 2022
Processing time: 74 Days and 17.7 Hours
Diabetic wounds (DWs) are a common complication of diabetes mellitus; DWs have a low cure rate and likely recurrence, thus affecting the quality of patients’ lives. As traditional therapy cannot effectively improve DW closure, DW has become a severe clinical medical problem worldwide. Unlike routine wound healing, DW is difficult to heal because of its chronically arrested inflammatory phase. Although mesenchymal stem cells and their secreted cytokines can alleviate oxidative stress and stimulate angiogenesis in wounds, thereby promoting wound healing, the biological activity of mesenchymal stem cells is compromised by direct injection, which hinders their therapeutic effect. Hydro-gels form a three-dimensional network that mimics the extracellular matrix, which can provide shelter for stem cells in the inflammatory microenvironment with reactive oxygen species in DW, and maintains the survival and viability of stem cells. This review summarizes the mechanisms and applications of stem cells and hydrogels in treating DW; additionally, it focuses on the different applications of therapy combining hydrogel and stem cells for DW treatment.
Core Tip: Diabetic wounds are a common diabetes mellitus complication with a low cure rate and likely recurrence. Although stem cell therapy is suitable for diabetic wound healing, simple transplantation methods, such as intravenous, subcutaneous, intramuscular, and local injection, are not conducive to cell survival, thus resulting in compromised efficacy. To improve the outcome of stem cell therapy, researchers have designed different types of hydrogels for stem cell delivery to ensure cell viability and paracrine functions. Herein, we discuss the current roles and applications of hydrogel and stem cell combination therapy for diabetic wound treatment.