Published online Oct 15, 2021. doi: 10.4239/wjd.v12.i10.1655
Peer-review started: January 28, 2021
First decision: May 3, 2021
Revised: May 22, 2021
Accepted: July 5, 2021
Article in press: July 5, 2021
Published online: October 15, 2021
Processing time: 257 Days and 22 Hours
During infections, nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors, such as the toll-like receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding and oligomerization domain-like receptors. The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons (IFNs), especially IFN-α and other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host. Although these sensors are hardwired to recognize pathogen associated molecular patterns, like viral and bacterial nucleic acids, under unusual physiological conditions, such as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids like DNA, RNA, and mitochondrial DNA are also released. The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to some extent in type 1 diabetes (T1D). This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.
Core Tip: Under abnormal physiological conditions, such as excessive cellular stress or apoptosis, endogenous self-nucleic acids like DNA, RNA or mitochondrial DNA accumulate in extranuclear compartments or extracellular spaces or form complexes with host proteins. Such situations sometimes lead to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune diseases like systemic lupus erythematosus, psoriasis and to some extent in type 1 diabetes (T1D). The understanding of the role of nucleic acid-sensing and their downstream signaling pathways is gradually evolving and provides another avenue in exploring therapeutic options for treating autoimmune diseases like T1D.