Mao RF, Chen YY, Zhang J, Chang X, Wang YF. Type 1 diabetes mellitus and its oral tolerance therapy. World J Diabetes 2020; 11(10): 400-415 [PMID: 33133388 DOI: 10.4239/wjd.v11.i10.400]
Corresponding Author of This Article
Rui-Feng Mao, PhD, Research Scientist, Teacher, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, No. 111 Changjiang West Road, Huai'an 223300, Jiangsu Province, China. mmrf2008@163.com
Research Domain of This Article
Immunology
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Diabetes. Oct 15, 2020; 11(10): 400-415 Published online Oct 15, 2020. doi: 10.4239/wjd.v11.i10.400
Type 1 diabetes mellitus and its oral tolerance therapy
Rui-Feng Mao, Ying-Ying Chen, Ji Zhang, Xin Chang, Ye-Fu Wang
Rui-Feng Mao, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
Ying-Ying Chen, Ji Zhang, School of Life Sciences, Huaiyin Normal University, Huai'an 223300, Jiangsu Province, China
Xin Chang, Department of Ultrasound Medicine, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, Jiangsu Province, China
Ye-Fu Wang, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei Province, China
Author contributions: Mao RF conceived and designed the study; Chen YY wrote the manuscript; Zhang J searched and classified the literature; Chang X and Wang YF revised the manuscript; all authors approved the final version of this manuscript.
Supported byNational Natural Science Foundation of China, No. 81803418; Natural Science Foundation of the Jiangsu Higher Education Institutions, No. 18KJD350001; and Project for Youth Scholar of Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Projection, No. HSXT2-314.
Conflict-of-interest statement: The authors declare no conflicts of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Rui-Feng Mao, PhD, Research Scientist, Teacher, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, No. 111 Changjiang West Road, Huai'an 223300, Jiangsu Province, China. mmrf2008@163.com
Received: May 23, 2020 Peer-review started: May 23, 2020 First decision: July 25, 2020 Revised: July 27, 2020 Accepted: August 31, 2020 Article in press: August 31, 2020 Published online: October 15, 2020 Processing time: 144 Days and 2.5 Hours
Abstract
As a T cell-mediated autoimmune disease, type 1 diabetes mellitus (T1DM) is marked by insulin defect resulting from the destruction of pancreatic β-cells. The understanding of various aspects of T1DM, such as its epidemiology, pathobiology, pathogenesis, clinical manifestations, and complications, has been greatly promoted by valuable research performed during the past decades. However, these findings have not been translated into an effective treatment. The ideal treatment should safely repair the destroyed immune balance in a long-lasting manner, preventing or stopping the destruction of β-cells. As a type of immune hypo-responsiveness to the orally administrated antigen, oral tolerance may be induced by enhancement of regulatory T cells (Tregs) or by anergy/deletion of T cells, depending on the dosage of orally administrated antigen. Acting as an antigen-specific immunotherapy, oral tolerance therapy for T1DM has been mainly performed using animal models and some clinical trials have been completed or are still ongoing. Based on the review of the proposed mechanism of the development of T1DM and oral tolerance, we give a current overview of oral tolerance therapy for T1DM conducted in both animal models and clinical trials.
Core Tip: As an antigen-specific immunotherapy, oral tolerance therapy has shown promise as a new strategy for the prevention and treatment of autoimmune diseases, including type 1 diabetes mellitus. Oral tolerance therapy in type 1 diabetes mellitus has been studied widely for a long time. In order to give a better understanding of these studies performed in animal models as well as in clinical trials, we review the related reports carefully and divide these studies into various categories based on their strategies. This careful review may be useful to guide the future studies.