Published online Mar 15, 2019. doi: 10.4239/wjd.v10.i3.181
Peer-review started: February 10, 2019
First decision: February 19, 2019
Revised: March 8, 2019
Accepted: March 11, 2019
Article in press: March 11, 2019
Published online: March 15, 2019
Processing time: 37 Days and 20.3 Hours
The regulatory factor X6 (RFX6), a member of regulatory factor X family, is known to play a key role in the development and differentiation of pancreatic beta cells as well as insulin production and secretion. However, the potential role of RFX6 in type 2 diabetes (T2D) is still unclear.
Recent studies have indicated that RFX6 binding to DNA could be disrupted in diabetes. Therefore, in this study we investigated whether genetic mutations are present in the DNA binding domain of RFX6 gene that could abrogate its function in T2D.
A cohort of T2D patients was enrolled in this study, and the gene encoding the DNA binding domain of RFX6 was amplified by polymerase chain reaction and then analysed by direct DNA sequencing.
The DNA sequence analysis revealed the absence of any exonic mutation. However, we have identified a new heterozygous single nucleotide polymorphism (IVS6+31 C>T) in the intronic region of DNA binding domain gene that is present in 9.2% and 8.5% of diabetic and control people, respectively (P = 0.97).
We report the absence of any significant genetic variant that could affect the function of RFX6-DNA binding domain in T2D.
Core tip: Regulatory factor X6 (RFX6) protein plays a key role in the differentiation of pancreatic beta cells as well as insulin production and secretion. Several lines of evidence have indicated that RFX6 binding to DNA could be disrupted in diabetes; however, the mechanism underlying this process is still unknown. In this case-control study, we analysed the genotype of RFX6-DNA binding domain in diabetes patients in comparison to healthy controls. Our results indicate the absence of any significant genetic variant in the DNA binding domain that could affect the function of RFX6 in type 2 diabetes.
