BPG is committed to discovery and dissemination of knowledge
Minireviews
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 111399
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111399
Table 1 Six studies published between 2022 and 2024 combined sarcopenia and radiomics assessments to predict clinical outcomes in esophageal cancer
Ref.
Tumor type
Prognostic targets
Imaging time/IV contrast
Muscle/fat image level
Radiomics image (ROI)
Zhou et al[16]Esophageal squamous cell carcinomaPFS and OSPretreatment/noL3 CTTumor ROI on PET and CT
Hinzpeter et al[17]Esophageal or gastroesophageal cancerMetastatic disease and OSPretreatment/noL3 CTTumor ROI on PET and CT
Vogele et al[18]Esophageal or gastric cancerSarcopenia and PDPretreatment and follow-up/yesL3 CTCT muscle ROIs on psoas major, quadratus lumborum, erector spinae
Iwashita et al[19]Esophageal cancerOSPretreatment/noL3 CTCT muscle ROIs on psoas, erector spinae, quadratus, lumborum, and abdominal wall muscles
Hinzpeter et al[20]Metastatic esophageal and gastroesophageal cancerPFS and OSPretreatment/noL3 CTTumor ROI on PET and CT
Anconina et al[21]Esophagogastric adenocarcinomaRFS and OSPretreatment/noL3 CTTumor ROI on PET and CT
Table 2 Summary of the predictive models and collected features, including clinical data, body composition indices, and radiomics, used in the six reviewed studies
Ref.
Model
Clinical data
Body composition index
Radiomics features or index
Zhou et al[16]Cox regression nomogramTumor stage, LVI, BMI, age, sex, number of PET-positive lymph nodes, treatmentSMI, VATI, SATI, and sarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males)Extracted 92 radiomic features, used LASSO for feature selection, calculated Rad-scores
Hinzpeter et al[17]Metastatic disease: LGBM and RF, OS: Cox regressionAge, sex, race, BMI, ECOG score, histology (subtype and grade), disease stage (M0 vs M1), tumor stage, SUV/SUL parametersSarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males)Extracted 307 radiomic features, filtered features based on significant difference (P < 0.01) between groups
Vogele et al[18]DT, KNN, RFSex, age, tumor type (gastric/esophageal), tumor stage, nodes stage, M stage, PDTPA and TPI sarcopenia (the lowest gender-specific quartile of TPI values at each time point)Extracted 85 radiomic features, used LASSO for feature selection
Iwashita et al[19]Cox regression, nomogramAge, sex, performance status, tumor location, chemotherapy, radiation dose, ENI, tumor, node, and metastasis stage, and various blood parameters (CRP, Albumin, NLR, PLR, PNI, mGPS)SMI, PMIExtracted 837 radiomic features, used LASSO-COX regression and VIF for feature selection
Hinzpeter et al[20]Cox regression, clinical, clinical + SMI, clinical + SMI + CT, clinical + SMI + CT + PETAge, sex, race, BMI, ECOG score, tumor stage, tumor histology, tumor grade, distance LN, pleura, metastasis organ, SUV/SUL parametersSarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males)No specificity description
Anconina et al[21]Cox regression nomogramAge, sex, race, BMI, ECOG score, tumor stage, nodes stage, LVISarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males)Extracted 42 radiomic features, filtered features based on significant difference (P < 0.01) between groups
Table 3 Summary of selected features, final or best-performing models, and predictive performance in the six reviewed studies
Ref.
Sample size
Selected features
Best/final model
Performance
Zhou et al[16]91Clinical: Stage, LVI, BMI. Body composition: SMI, VATI. Rad-score: PFS: Conventional_SUVbwmin_CT, shape_sphericity, GLCM_correlation_CT, GLRLM_LGRE_CT, GLCM_homogeneity_PET, GLRLM_LRE_PET, and GLZLM_SZHGE_PET; OS: Shape_volume(mL)_CT, shape_compacity_CT, GLCM_contrast_CT, GLZLM_SZECT, conventional_SUVbwmean_PET, shape_compacity_PET, GLRLM_SRHGE_PET, GLZLM_SZHGE_PET, and GLZLM_GLNU_PETCox regression and nomogram (clinical + body composition + Rad-score)PFS: C-index/AUC = 0.810 (95%CI: 0.737-0.884). OS: C-index/AUC = 0.806 (95%CI: 0.720-0.891)
Hinzpeter et al[17]243Metastatic disease: Radiomics features, clinical data (age, sex, race, BMI, ECOG, histopathology, grade), SMI; OS: Clinical (ECOG ≥ 2, age ≥ 70, M1 disease), radiomics (CT: Shape volume, PET: GLZLM ZLNU)Metastatic disease: LGBM. OS: Cox regressionMetastatic disease: Accuracy 80%, AUC 88%, recall 84%, precision 80%, F1-score 82%. OS: Kaplan-Meier survival analysis and hazard ratios showed statistical significance in the selected features; specific AUC/C-index not reported
Vogele et al[18]83Radiomics features (area, HMXG, HP10, HRMAD, IIQR, IMN, Intensity P10th, GCS)RFSarcopenia: Accuracy 0.90 ± 0.03; AUC 0.96 ± 0.02. PD: Accuracy 0.88 ± 0.04; AUC 0.93 ± 0.04. Sarcopenia + PD: Accuracy 0.93 ± 0.04; AUC 0.97 ± 0.04
Iwashita et al[19]98Clinical (chemotherapy, prophylactic lymph node area irradiation, albumin, PNI, PLR, CRP/Alb ratio). Radiomics (L3wavelet.LHLfirstorderSkewness, L3wavelet.HLLgldmSmallDependenceLowGrayLevelEmphasis, L3wavelet.HLHfirstorderMean, L3wavelet.HLHglcmMCC, Lumbowavelet.HLLngtdmBusyness, Lumbowavelet.HLLngtdmContrast, AbsoriginalfirstorderUniformity, Abswavelet.HHHglcmImc2)Cox regression and nomogram (clinical + radiomic)OS: Validation dataset: Accuracy 75%, specificity 92%, sensitivity 75%, AUC = 0.86 (0.70-1.00), C-index = 0.88 (0.85-0.91)
Hinzpeter et al[20]128PFS: Clinical (ECOG, bone metastases), SMI, CT radiomics (NGLDM contrast), PET radiomics (shape volume, 70_Kurtosis). OS: Clinical (ECOG, bone metastases), SMI, CT radiomics (NGLDM Coarseness), PET radiomics (GLZLM_SZLGE)Cox regression. OS: 6-36 months, clinical + SMI + CT + PET; at 3 month, clinical + SMI + CT; PFS: 3-21 months, clinical + SMI + CT + PET; 24-36 months, clinical + SMIPFS: At 30 months, model (clinical + SMI) AUC = 0.86. OS: At 24 months, model (clinical + SMI + CT + PET) AUC = 0.88
Anconina et al[21]145RFS: Clinical (ECOG, tumor stage, nodes stage), sarcopenia, CT mean HU, PET kurtosis. OS: Clinical (ECOG, tumor stage, nodes stage), sarcopenia, CT mean HUCox regression and nomogram (clinical + sarcopenia + CT + PET)RFS: At 24 months and 30 months, model (clinical + SMI + CT + PET) AUC = 0.81. OS: At 18 months and 24 months, model (clinical + SMI + CT) AUC = 0.80