Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 111399
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111399
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111399
Table 1 Six studies published between 2022 and 2024 combined sarcopenia and radiomics assessments to predict clinical outcomes in esophageal cancer
| Ref. | Tumor type | Prognostic targets | Imaging time/IV contrast | Muscle/fat image level | Radiomics image (ROI) |
| Zhou et al[16] | Esophageal squamous cell carcinoma | PFS and OS | Pretreatment/no | L3 CT | Tumor ROI on PET and CT |
| Hinzpeter et al[17] | Esophageal or gastroesophageal cancer | Metastatic disease and OS | Pretreatment/no | L3 CT | Tumor ROI on PET and CT |
| Vogele et al[18] | Esophageal or gastric cancer | Sarcopenia and PD | Pretreatment and follow-up/yes | L3 CT | CT muscle ROIs on psoas major, quadratus lumborum, erector spinae |
| Iwashita et al[19] | Esophageal cancer | OS | Pretreatment/no | L3 CT | CT muscle ROIs on psoas, erector spinae, quadratus, lumborum, and abdominal wall muscles |
| Hinzpeter et al[20] | Metastatic esophageal and gastroesophageal cancer | PFS and OS | Pretreatment/no | L3 CT | Tumor ROI on PET and CT |
| Anconina et al[21] | Esophagogastric adenocarcinoma | RFS and OS | Pretreatment/no | L3 CT | Tumor ROI on PET and CT |
Table 2 Summary of the predictive models and collected features, including clinical data, body composition indices, and radiomics, used in the six reviewed studies
| Ref. | Model | Clinical data | Body composition index | Radiomics features or index |
| Zhou et al[16] | Cox regression nomogram | Tumor stage, LVI, BMI, age, sex, number of PET-positive lymph nodes, treatment | SMI, VATI, SATI, and sarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males) | Extracted 92 radiomic features, used LASSO for feature selection, calculated Rad-scores |
| Hinzpeter et al[17] | Metastatic disease: LGBM and RF, OS: Cox regression | Age, sex, race, BMI, ECOG score, histology (subtype and grade), disease stage (M0 vs M1), tumor stage, SUV/SUL parameters | Sarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males) | Extracted 307 radiomic features, filtered features based on significant difference (P < 0.01) between groups |
| Vogele et al[18] | DT, KNN, RF | Sex, age, tumor type (gastric/esophageal), tumor stage, nodes stage, M stage, PD | TPA and TPI sarcopenia (the lowest gender-specific quartile of TPI values at each time point) | Extracted 85 radiomic features, used LASSO for feature selection |
| Iwashita et al[19] | Cox regression, nomogram | Age, sex, performance status, tumor location, chemotherapy, radiation dose, ENI, tumor, node, and metastasis stage, and various blood parameters (CRP, Albumin, NLR, PLR, PNI, mGPS) | SMI, PMI | Extracted 837 radiomic features, used LASSO-COX regression and VIF for feature selection |
| Hinzpeter et al[20] | Cox regression, clinical, clinical + SMI, clinical + SMI + CT, clinical + SMI + CT + PET | Age, sex, race, BMI, ECOG score, tumor stage, tumor histology, tumor grade, distance LN, pleura, metastasis organ, SUV/SUL parameters | Sarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males) | No specificity description |
| Anconina et al[21] | Cox regression nomogram | Age, sex, race, BMI, ECOG score, tumor stage, nodes stage, LVI | Sarcopenia (SMI < 34.4 cm2/m2 in females, < 45.4 cm2/m2 in males) | Extracted 42 radiomic features, filtered features based on significant difference (P < 0.01) between groups |
Table 3 Summary of selected features, final or best-performing models, and predictive performance in the six reviewed studies
| Ref. | Sample size | Selected features | Best/final model | Performance |
| Zhou et al[16] | 91 | Clinical: Stage, LVI, BMI. Body composition: SMI, VATI. Rad-score: PFS: Conventional_SUVbwmin_CT, shape_sphericity, GLCM_correlation_CT, GLRLM_LGRE_CT, GLCM_homogeneity_PET, GLRLM_LRE_PET, and GLZLM_SZHGE_PET; OS: Shape_volume(mL)_CT, shape_compacity_CT, GLCM_contrast_CT, GLZLM_SZECT, conventional_SUVbwmean_PET, shape_compacity_PET, GLRLM_SRHGE_PET, GLZLM_SZHGE_PET, and GLZLM_GLNU_PET | Cox regression and nomogram (clinical + body composition + Rad-score) | PFS: C-index/AUC = 0.810 (95%CI: 0.737-0.884). OS: C-index/AUC = 0.806 (95%CI: 0.720-0.891) |
| Hinzpeter et al[17] | 243 | Metastatic disease: Radiomics features, clinical data (age, sex, race, BMI, ECOG, histopathology, grade), SMI; OS: Clinical (ECOG ≥ 2, age ≥ 70, M1 disease), radiomics (CT: Shape volume, PET: GLZLM ZLNU) | Metastatic disease: LGBM. OS: Cox regression | Metastatic disease: Accuracy 80%, AUC 88%, recall 84%, precision 80%, F1-score 82%. OS: Kaplan-Meier survival analysis and hazard ratios showed statistical significance in the selected features; specific AUC/C-index not reported |
| Vogele et al[18] | 83 | Radiomics features (area, HMXG, HP10, HRMAD, IIQR, IMN, Intensity P10th, GCS) | RF | Sarcopenia: Accuracy 0.90 ± 0.03; AUC 0.96 ± 0.02. PD: Accuracy 0.88 ± 0.04; AUC 0.93 ± 0.04. Sarcopenia + PD: Accuracy 0.93 ± 0.04; AUC 0.97 ± 0.04 |
| Iwashita et al[19] | 98 | Clinical (chemotherapy, prophylactic lymph node area irradiation, albumin, PNI, PLR, CRP/Alb ratio). Radiomics (L3wavelet.LHLfirstorderSkewness, L3wavelet.HLLgldmSmallDependenceLowGrayLevelEmphasis, L3wavelet.HLHfirstorderMean, L3wavelet.HLHglcmMCC, Lumbowavelet.HLLngtdmBusyness, Lumbowavelet.HLLngtdmContrast, AbsoriginalfirstorderUniformity, Abswavelet.HHHglcmImc2) | Cox regression and nomogram (clinical + radiomic) | OS: Validation dataset: Accuracy 75%, specificity 92%, sensitivity 75%, AUC = 0.86 (0.70-1.00), C-index = 0.88 (0.85-0.91) |
| Hinzpeter et al[20] | 128 | PFS: Clinical (ECOG, bone metastases), SMI, CT radiomics (NGLDM contrast), PET radiomics (shape volume, 70_Kurtosis). OS: Clinical (ECOG, bone metastases), SMI, CT radiomics (NGLDM Coarseness), PET radiomics (GLZLM_SZLGE) | Cox regression. OS: 6-36 months, clinical + SMI + CT + PET; at 3 month, clinical + SMI + CT; PFS: 3-21 months, clinical + SMI + CT + PET; 24-36 months, clinical + SMI | PFS: At 30 months, model (clinical + SMI) AUC = 0.86. OS: At 24 months, model (clinical + SMI + CT + PET) AUC = 0.88 |
| Anconina et al[21] | 145 | RFS: Clinical (ECOG, tumor stage, nodes stage), sarcopenia, CT mean HU, PET kurtosis. OS: Clinical (ECOG, tumor stage, nodes stage), sarcopenia, CT mean HU | Cox regression and nomogram (clinical + sarcopenia + CT + PET) | RFS: At 24 months and 30 months, model (clinical + SMI + CT + PET) AUC = 0.81. OS: At 18 months and 24 months, model (clinical + SMI + CT) AUC = 0.80 |
- Citation: Peng CM, Chen CW, Hsieh CH, Cheng YY, Liao CH, Hsieh MF, Lin SC, Liu MC, Liu YJ. Radiomics meets sarcopenia: Machine learning-based multimodal modeling for esophageal cancer outcomes. World J Gastrointest Oncol 2025; 17(10): 111399
- URL: https://www.wjgnet.com/1948-5204/full/v17/i10/111399.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i10.111399
