Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 111367
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111367
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111367
Table 1 Applications of artificial intelligence based on medical imaging for intrahepatic cholangiocarcinoma diagnosis
| Ref. | Sample size | Data source | Algorithms | Aim | Validation set or test set results |
| Ding et al[27] | 3725 cases | CEUS | LSTM, MLP | ICC diagnosis | Accuracy (97%) |
| Ren et al[29] | 226 cases | US | SVM | ICC vs HCC | AUC (0.936), sensitivity (90%), specificity (85.7%), accuracy (86.8%) |
| Chen et al[31] | 465 cases | B-mode US | ResNet18 | ICC vs HCC vs cHCC-CCA | AUC (0.9237), sensitivity (84.59%), specificity (92.65%), accuracy (86%) |
| Qian et al[32] | 169 cases | 2D US | LASSO, RFE, RF | ICC vs IBDS | AUC (0.988) |
| Gao et al[36] | 723 cases | Multi-phase CECT | CNN, RNN | ICC vs HCC | AUC (0.944), accuracy (82.9%) |
| Wei et al[38] | 4039 cases | Multi-phase CECT | ResNet50, SKD | ICC vs HCC vs metastatic liver cancer | AUC (0.956), accuracy (88.7%) |
| Midya et al[39] | 814 cases | Portal venous phase CECT | Inception v3 | ICC vs HCC vs CRLM vs liver benign tumors | Accuracy (96.27%) |
| Xue et al[40] | 96 cases | Arterial-phase CECT | LASSO | IBDS with ICC vs IBDS with cholangitis | AUC (0.879) |
| Yang et al[42] | 112 cases | CECT | LASSO | ICC vs EHA | AUC (0.868), sensitivity (94.4%), specificity (81.3%) |
| Xu et al[43] | 129 cases | CECT | RF, LDA | ICC vs HL | AUC (0.997), accuracy (96.9%) |
| Liu et al[44] | 177 cases | DCE-MRI | LASSO | ICC vs HCC | AUC (0.877) |
| Hu et al[46] | 514 cases | Multi-phasic MRI | TPOT | ICC vs HCC | AUC (0.79), accuracy (75%), sensitivity (75%), specificity (79%) |
| Liu et al[47] | 112 cases | T2-weighted MRI | SFFNet | MF-ICC vs HCC | AUC (0.968), accuracy (92.26%) |
| Zhou et al[48] | 216 cases | DCE-MRI | LASSO | MF-ICC vs cHCC-CCA | AUC (0.897), sensitivity (79%), specificity (76.1%), accuracy (76.9%) |
| Xu et al[49] | 133 cases | Multiparameter MRI | mRMR, LASSO | MF-ICC vs CRLM | AUC (0.94) |
| Starmans et al[50] | 486 cases | T2-weighted MRI | WORC | ICC vs HCA vs FNH | AUC (0.78), sensitivity (84%), specificity (62%), accuracy (71%) |
| Cheng et al[51] | 178 cases | CECT, MRI | ResNet50, LASSO | ICC diagnosis | AUC (0.937), sensitivity (80%), specificity (87.2%), accuracy (85.2%) |
| Jiang et al[52] | 127 cases | 18F-FDG PET/CT | SFFS, RF | ICC vs HCC | AUC (0.86), sensitivity (78%), specificity (88%), accuracy (82%) |
Table 2 Applications of artificial intelligence in predicting intrahepatic cholangiocarcinoma recurrence risk factors
| Ref. | Sample size | Data source | Algorithms | Aim | Validation/training set results |
| Xu et al[65] | 106 cases | T1-weighted contrast-enhanced MRI | mRMR, SVM | LNM prediction | AUC (0.87), sensitivity (89.47%), specificity (69.57%), accuracy (78.57%) |
| Xu et al[67] | 116 cases | CECT | mRMR, LASSO | TLSs status prediction | AUC (0.85) |
| Mi et al[68] | 271 cases | CEA, CA19-9, number, differentiation, and primary site of tumor | SVM | Prediction of LN status for non-dissected patients | AUC (0.754) |
| Gao et al[72] | 519 cases | DCE-MRI | CNN | MVI prediction | AUC (0.895), sensitivity (73.9%), specificity (89.6%), accuracy (85.6%) |
| Ma et al[74] | 160 cases | T1-weighted MRI, T2-weighted MRI, DWI | LASSO, LR, SVM | MVI prediction | AUC (0.867), sensitivity (64.3%), specificity (80%) |
| Jiang et al[52] | 127 cases | 18F-FDG PET/CT | SFFS, RF | MVI prediction | AUC (0.90), sensitivity (75%), specificity (80%), accuracy (77%) |
| Fiz et al[75] | 74 cases | 18F-FDG PET/CT | CART, RF | Prediction of MVI and ICC grading | AUC (0.87) for MVI, AUC (0.78) for grading |
| Liu et al[79] | 243 cases | CECT | XGBoost | PNI prediction | AUC (0.831), sensitivity (76.2%), specificity (87.2%), accuracy (81.5%) |
| Qian et al[82] | 178 cases | Gd-DTPA-enhanced MRI | LASSO, LDA | Ki67 prediction | AUC (0.815), sensitivity (75%), specificity (76.7%), accuracy (71.4%) |
| Peng et al[76] | 128 cases | US | SVM, LASSO, LR, GBDT, bagging | Prediction of MVI, PNI, Ki67, VEGF, CK7, and differentiation | Sensitivity (75%), specificity (72.2%), accuracy (73.5%) for ICC differentiation |
- Citation: Qiao L, Luo YG, Wang QY, Yuan T, Xu M, Xiong GB, Zhu F. Artificial intelligence in the diagnosis and prognosis of intrahepatic cholangiocarcinoma: Applications and challenges. World J Gastrointest Oncol 2025; 17(10): 111367
- URL: https://www.wjgnet.com/1948-5204/full/v17/i10/111367.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i10.111367
