BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Oct 15, 2025; 17(10): 111367
Published online Oct 15, 2025. doi: 10.4251/wjgo.v17.i10.111367
Table 1 Applications of artificial intelligence based on medical imaging for intrahepatic cholangiocarcinoma diagnosis
Ref.
Sample size
Data source
Algorithms
Aim
Validation set or test set results
Ding et al[27]3725 casesCEUSLSTM, MLPICC diagnosisAccuracy (97%)
Ren et al[29]226 casesUSSVMICC vs HCCAUC (0.936), sensitivity (90%), specificity (85.7%), accuracy (86.8%)
Chen et al[31]465 casesB-mode USResNet18ICC vs HCC vs cHCC-CCAAUC (0.9237), sensitivity (84.59%), specificity (92.65%), accuracy (86%)
Qian et al[32]169 cases2D USLASSO, RFE, RFICC vs IBDSAUC (0.988)
Gao et al[36]723 casesMulti-phase CECTCNN, RNNICC vs HCCAUC (0.944), accuracy (82.9%)
Wei et al[38]4039 casesMulti-phase CECTResNet50, SKDICC vs HCC vs metastatic liver cancerAUC (0.956), accuracy (88.7%)
Midya et al[39]814 casesPortal venous phase CECTInception v3ICC vs HCC vs CRLM vs liver benign tumorsAccuracy (96.27%)
Xue et al[40]96 casesArterial-phase CECTLASSOIBDS with ICC vs IBDS with cholangitisAUC (0.879)
Yang et al[42]112 casesCECTLASSOICC vs EHAAUC (0.868), sensitivity (94.4%), specificity (81.3%)
Xu et al[43]129 casesCECTRF, LDAICC vs HLAUC (0.997), accuracy (96.9%)
Liu et al[44]177 casesDCE-MRILASSOICC vs HCCAUC (0.877)
Hu et al[46]514 casesMulti-phasic MRITPOTICC vs HCCAUC (0.79), accuracy (75%), sensitivity (75%), specificity (79%)
Liu et al[47]112 casesT2-weighted MRISFFNetMF-ICC vs HCCAUC (0.968), accuracy (92.26%)
Zhou et al[48]216 casesDCE-MRILASSOMF-ICC vs cHCC-CCAAUC (0.897), sensitivity (79%), specificity (76.1%), accuracy (76.9%)
Xu et al[49]133 casesMultiparameter MRImRMR, LASSOMF-ICC vs CRLMAUC (0.94)
Starmans et al[50]486 casesT2-weighted MRIWORCICC vs HCA vs FNHAUC (0.78), sensitivity (84%), specificity (62%), accuracy (71%)
Cheng et al[51]178 casesCECT, MRIResNet50, LASSOICC diagnosisAUC (0.937), sensitivity (80%), specificity (87.2%), accuracy (85.2%)
Jiang et al[52]127 cases18F-FDG PET/CTSFFS, RFICC vs HCCAUC (0.86), sensitivity (78%), specificity (88%), accuracy (82%)
Table 2 Applications of artificial intelligence in predicting intrahepatic cholangiocarcinoma recurrence risk factors
Ref.
Sample size
Data source
Algorithms
Aim
Validation/training set results
Xu et al[65]106 casesT1-weighted contrast-enhanced MRImRMR, SVMLNM predictionAUC (0.87), sensitivity (89.47%), specificity (69.57%), accuracy (78.57%)
Xu et al[67]116 casesCECTmRMR, LASSOTLSs status predictionAUC (0.85)
Mi et al[68]271 casesCEA, CA19-9, number, differentiation, and primary site of tumorSVMPrediction of LN status for non-dissected patientsAUC (0.754)
Gao et al[72]519 casesDCE-MRICNNMVI predictionAUC (0.895), sensitivity (73.9%), specificity (89.6%), accuracy (85.6%)
Ma et al[74]160 casesT1-weighted MRI, T2-weighted MRI, DWILASSO, LR, SVMMVI predictionAUC (0.867), sensitivity (64.3%), specificity (80%)
Jiang et al[52]127 cases18F-FDG PET/CTSFFS, RFMVI predictionAUC (0.90), sensitivity (75%), specificity (80%), accuracy (77%)
Fiz et al[75]74 cases18F-FDG PET/CTCART, RFPrediction of MVI and ICC gradingAUC (0.87) for MVI, AUC (0.78) for grading
Liu et al[79]243 casesCECTXGBoostPNI predictionAUC (0.831), sensitivity (76.2%), specificity (87.2%), accuracy (81.5%)
Qian et al[82]178 casesGd-DTPA-enhanced MRILASSO, LDAKi67 predictionAUC (0.815), sensitivity (75%), specificity (76.7%), accuracy (71.4%)
Peng et al[76]128 casesUSSVM, LASSO, LR, GBDT, baggingPrediction of MVI, PNI, Ki67, VEGF, CK7, and differentiationSensitivity (75%), specificity (72.2%), accuracy (73.5%) for ICC differentiation