Published online Dec 15, 2019. doi: 10.4251/wjgo.v11.i12.1193
Peer-review started: June 18, 2019
First decision: July 31, 2019
Revised: August 13, 2019
Accepted: September 10, 2019
Article in press: September 10, 2019
Published online: December 15, 2019
Processing time: 179 Days and 18.6 Hours
Hepatocellular adenoma (HCA) is prone to secondary hemorrhage, and has a certain tendency towards malignant transformation. It needs to be closely observed and surgically removed if necessary. Focal nodular hyperplasia (FNH), which often needs to be differentiated, is a vascular malformation lesion, which is not a true tumor and has a tendency to spontaneously resolve, so conservative treatment can be adopted. The treatment methods and prognosis of them are quite different, but they are not easy to clinically identify. Therefore, it is of great significance to explore effective identification methods for them.
Current studies have shown that biochemical indicators do not have obvious advantages in identifying HCA and FNH. In imaging methods, it is difficult to distinguish the difference by using ultrasound. Recent studies have shown that contrast enhanced ultrasound (CEUS) can be used to diagnose HCA, but the diagnostic accuracy of FNH is low. It revealed that the value of differential diagnosis using conventional ultrasound, or CEUS individually, is limited. In recent years, shear wave elastography (SWE) has been widely used in the identification of benign and malignant tumors in the liver, but there are few applications for the differential diagnosis of HCA and FNH. Therefore, methods for identifying HAC and FNH are still lacking in the clinic.
In order to explore effective methods for identifying HCA and FNH, we will analyze the routine clinical indicators, including Doppler ultrasound, CEUS and SWE, in HCA and FNH patients. Logistic regression analysis will be used to analyze the significance of combined diagnosis of multi-parameter ultrasound indicators for improving the differential diagnosis of HCA and FNH.
The study included 31 patients with HCA, and 50 patients with FNH. The clinical data of the two groups were recorded, and conventional ultrasound, CEUS, and SWE examinations were performed, and the ultrasound parameters such as lesion position, boundary echo, value and ratio of Young’s modulus (YM), slope of TIC curve, etc were recorded. Multivariate regression analysis was used to screen potential indicators for the differential diagnosis of HCA and FNH. A ROC curve was used to evaluate the accuracy of potential indicators in differential diagnosis. A logistic regression model was used to establish a combination to explore the accuracy of differential diagnosis.
Multivariate regression analysis showed that lesion echo (P = 0.000), YM value (P = 0.000) and TIC decreasing slope (P = 0.000) were the potential indicators for identifying HCA and FNH. The accuracy of differential diagnosis of YM value is the highest, but its AUC is still less than 0.9. It is suggested that although the lesion echo, YM value and TIC decreasing slope were the influencing factors of HCA, the accuracy of differential diagnosis using conventional ultrasound, SWE and CEUS alone was limited. Further logistic regression results showed that the accuracy of the combined diagnosis of three indicators (AUC = 0.938) was significantly higher than the AUC of lesion echo (AUC = 0.676), YM value (AUC = 0.891), and TIC decreasing slope (AUC = 0.785). It is suggested that the accuracy of the combination of the three indicators is the best. The combined diagnosis of multi-parameter ultrasound can significantly improve the accuracy of differential diagnosis between HCA and FNH.
Multi-parameter ultrasound in the differential diagnosis of HCA and FNH plays an important role. The combination of lesion echo, YM value and TIC decreasing slope can significantly improve the accuracy of differential diagnosis.
In order to avoid the limitation of HCA patient cases, as well as the influence of the depth of the lesion and operator in SWE defection. This study plans to further develop a multicenter study on HCA to improve diagnosis accuracy. The multi-center large sample study will further reveal the role of multi-parameter ultrasound in the differential diagnosis of HCA and FNH, and further improve the accuracy of the diagnosis.