Published online Dec 15, 2024. doi: 10.4251/wjgo.v16.i12.4548
Revised: August 5, 2024
Accepted: August 12, 2024
Published online: December 15, 2024
Processing time: 118 Days and 10.8 Hours
Survival rates following radical surgery for gastric neuroendocrine neoplasms (g-NENs) are low, with high recurrence rates. This fact impacts patient prognosis and complicates postoperative management. Traditional prognostic models, including the Cox proportional hazards (CoxPH) model, have shown limited predictive power for postoperative survival in gastrointestinal neuroectodermal tumor patients. Machine learning methods offer a unique opportunity to analyze complex relationships within datasets, providing tools and methodologies to assess large volumes of high-dimensional, multimodal data generated by biological sciences. These methods show promise in predicting outcomes across various medical disciplines. In the context of g-NENs, utilizing machine learning to predict survival outcomes holds potential for personalized postoperative management strategies. This editorial reviews a study exploring the advantages and effectiveness of the random survival forest (RSF) model, using the lymph node ratio (LNR), in predicting disease-specific survival (DSS) in postoperative g-NEN patients stratified into low-risk and high-risk groups. The findings demonstrate that the RSF model, incorporating LNR, outperformed the CoxPH model in predicting DSS and constitutes an important step towards precision medicine.
Core Tip: Liu et al’s study addresses a critical issue in determining the postoperative prognosis of gastric neuroendocrine tumors by identifying the significance of lymph node ratio. Moreover, the random survival forest model, a machine-learning approach, surpasses traditional Cox proportional hazards models by enhancing predictive accuracy, clinical utility, and overall performance. This model’s ability to stratify patient risks and personalize survival predictions can aid in formulating targeted postoperative strategies, thus realizing an important aspect of personalized “precision medicine”.