Copyright
©The Author(s) 2026.
World J Hepatol. Feb 27, 2026; 18(2): 111099
Published online Feb 27, 2026. doi: 10.4254/wjh.v18.i2.111099
Published online Feb 27, 2026. doi: 10.4254/wjh.v18.i2.111099
Table 1 Baseline characteristics, n (%)/mean ± SD
| Characteristic | Retrospective (n = 94) | Prospective (n = 24) |
| Age | 56.76 ± 9.76 | 58.5 ± 9.1 |
| Sex male | 73 (77.7) | 19 (79.2) |
| Race | ||
| White | 7 (16.7) | 14 (58.3) |
| Black | 2 (4.8) | 7 (29.2) |
| Other | 33 (78.6) | 3 (12.5) |
| Etiology | ||
| Alcohol | 58 (61.7) | 14 (58.3) |
| Alcohol + HCV | 13 (13.8) | 3 (12.5) |
| HCV | 17 (18.1) | 6 (25.0) |
| Hepatorenal syndrome yes | 18 (19.1) | 2 (8.3) |
| Medication use | ||
| Omeprazole yes | 28 (29.8) | 6 (25.0) |
| Spironolactone yes | 15 (16.0) | 7 (29.2) |
| Furosemide yes | 15 (16.0) | 6 (25.0) |
| Propranolol yes | 23 (24.5) | 10 (41.7) |
| Clinical parameters | ||
| Dialysis yes | 2 (2.1) | 0 (0.0) |
| Portal vein thrombosis yes | 3 (3.2) | 2 (8.3) |
| Ascites yes | 57 (60.6) | 7 (33.3) |
| Hepatocellular carcinoma yes | 9 (9.6) | 3 (12.5) |
| Laboratory values | ||
| Albumin | 2.66 ± 0.59 | 2.7 ± 1.0 |
| Total bilirubin | 3.30 ± 4.00 | 6.7 ± 11.1 |
| Direct bilirubin | 2.24 ± 3.14 | 5.1 ± 9.1 |
| INR | 1.62 ± 0.66 | 1.6 ± 0.4 |
| Creatinine | 1.31 ± 1.13 | 1.2 ± 0.7 |
| Platelets | 102892.47 ± 62639.32 | 117734.2 ± 119141.2 |
| Other parameters | ||
| Varices yes | 76 (98.7) | 23 (95.8) |
| Active bleeding yes | 12 (15.8) | 5 (20.8) |
| 1-year death yes | 48 (51.1) | 8 (33.3) |
Table 2 Prediction using machine learning
| Model | Sensitivity (recall) | Specificity | Accuracy |
| Logistic regression | 0.67 | 0.71 | 0.69 |
| Random forest | 0.80 | 0.86 | 0.83 |
| SVM | 0.73 | 0.64 | 0.69 |
| Naive bayes | 0.93 | 0.21 | 0.59 |
| Decision tree | 0.53 | 0.79 | 0.66 |
| MLP | 0.67 | 0.86 | 0.76 |
Table 3 Performance metrics for the random forest model in internal and prospective validation, mean ± SD
| Metric | Internal validation | Prospective validation |
| AUC | 0.715 ± 0.106 | 0.927 ± 0.053 |
| Accuracy | 0.688 ± 0.089 | 0.829 ± 0.078 |
| Recall | 0.752 ± 0.127 | 0.867 ± 0.126 |
| F1 score | 0.657 ± 0.109 | 0.760 ± 0.120 |
| Brier score | 0.218 ± 0.038 | 0.175 ± 0.016 |
Table 4 Performance comparison of the random forest model vs traditional clinical scoring systems for predicting 1-year mortality in patients with cirrhosis with acute esophageal variceal bleeding (retrospective cohort, n = 97)
| Model | AUC (95%CI) | Sensitivity | Specificity | Accuracy | Brier score |
| Random forest | 0.915 (0.856-0.961) | 0.800 | 0.860 | 0.830 | 0.124 |
| MELD-Na | 0.742 (0.651-0.823) | 0.688 | 0.717 | 0.702 | 0.186 |
| MELD | 0.726 (0.634-0.809) | 0.667 | 0.696 | 0.681 | 0.194 |
| Child-Pugh | 0.685 (0.591-0.771) | 0.625 | 0.674 | 0.649 | 0.217 |
| Glasgow-Blatchford | 0.598 (0.502-0.690) | 0.542 | 0.609 | 0.574 | 0.248 |
- Citation: Rech MM, Corso LL, Dal Bó EF, Ferraza AD, Tomé F, Terres AZ, Balbinot RS, Balbinot RA, Balbinot SS, Soldera J. Development and prospective validation of a machine learning model to predict mortality in cirrhosis with esophageal variceal bleeding. World J Hepatol 2026; 18(2): 111099
- URL: https://www.wjgnet.com/1948-5182/full/v18/i2/111099.htm
- DOI: https://dx.doi.org/10.4254/wjh.v18.i2.111099
