Published online Jul 27, 2022. doi: 10.4254/wjh.v14.i7.1382
Peer-review started: March 2, 2022
First decision: April 13, 2022
Revised: April 29, 2022
Accepted: June 14, 2022
Article in press: June 14, 2022
Published online: July 27, 2022
Processing time: 147 Days and 12.8 Hours
Core Tip: Our results from the non-alcoholic fatty liver disease analysis reinforce the role of altered metabolism, inflammation, and cell survival in pathogenesis and support recently described contributors to disease activity, such as altered androgen and lncrna activity. The top upstream regulator was found to be sterol regulatory element binding transcription factor 1 (SREBF1), a transcription factor involved in lipid homeostasis. Downstream of SREBF1, we observed upregulation in CXCL10, HMGCR, HMGCS1, FABP5, PEG10, and downregulation of SHBG and IGF1. These molecular changes reflect low-grade inflammation secondary to accumulation of fatty acids in the liver. Our results from the NASH analysis emphasized the role of cholesterol in pathogenesis. Top upstream regulators included pro-inflammatory cytokines TNF and IL1B, PDGF BB, and beta-estradiol. Inhibition of beta-estradiol was shown to be related to derangement of several cellular downstream processes including metabolism, extracellular matrix deposition, and tumor suppression. Lastly, we found riciribine (an AKT inhibitor) and ZSTK-474 (a PI3K inhibitor) as potential drugs that targeted the differential gene expression in our dataset.
