Basic Study
Copyright ©The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Feb 27, 2018; 10(2): 287-296
Published online Feb 27, 2018. doi: 10.4254/wjh.v10.i2.287
Multipotent stromal cells stimulate liver regeneration by influencing the macrophage polarization in rat
Andrey Elchaninov, Timur Fatkhudinov, Natalia Usman, Irina Arutyunyan, Andrey Makarov, Anastasia Lokhonina, Irina Eremina, Viktor Surovtsev, Dmitry Goldshtein, Galina Bolshakova, Valeria Glinkina, Gennady Sukhikh
Andrey Elchaninov, Timur Fatkhudinov, Natalia Usman, Irina Arutyunyan, Andrey Makarov, Anastasia Lokhonina, Gennady Sukhikh, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow 117997, Russia
Andrey Elchaninov, Timur Fatkhudinov, Anastasia Lokhonina, Irina Eremina, Viktor Surovtsev, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
Irina Arutyunyan, Galina Bolshakova, Scientific Research Institute of Human Morphology, Moscow 117418, Russia
Andrey Makarov, Valeria Glinkina, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
Dmitry Goldshtein, Research Center of Medical Genetics, Moscow 115478, Russia
Author contributions: Elchaninov A and Fatkhudinov T contributed to study conception and design; Elchaninov A, Usman N and Arutyunyan I contributed to data acquisition, data analysis and interpretation; Elchaninov A, Makarov A, Lokhonina A, Eremina I, Surovtsev V, Goldshtein D, Bolshakova G, Glinkina V and Sukhikh G contributed to data acquisition, data analysis and interpretation; Elchaninov A, Fatkhudinov T and Usman N contributed to editing, reviewing and final approval of article.
Supported by Russian Science Foundation, No. 17-15-01419.
Institutional review board statement: The study was approved by the Ethical Review Board at the Scientific Research Institute of Human Morphology, Protocol No. 16, November 19, 2015 (Moscow, Russian Federation).
Institutional animal care and use committee statement: All experimental work involving animals was carried out according to the standards of laboratory practice (National Guidelines No.267 by Ministry of Healthcare of the Russian Federation.
Conflict-of-interest statement: The authors do not have any commercial or other association that might pose a conflict of interest.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Timur Fatkhudinov, DSc, MD, PhD, Academic Research, Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia. tfat@yandex.ru
Telephone: +7-903-2561157 Fax: +7-495-4388507
Received: September 18, 2017
Peer-review started: September 20, 2017
First decision: October 31, 2017
Revised: October 31, 2017
Accepted: February 5, 2018
Article in press: February 5, 2018
Published online: February 27, 2018
Processing time: 167 Days and 0.5 Hours
Core Tip

Core tip: Umbilical cord-derived multipotent stromal cells stimulate reparative processes within the liver after subtotal resection (removal of 80% of the organ mass). Multipotent stromal cells stimulate hepatocyte proliferation in rats after subtotal resection and favor polarization of macrophages to M2 phenotype. The transplanted multipotent stromal cells do not differentiate into any of the liver cell types under these conditions.