Published online Feb 27, 2022. doi: 10.4254/wjh.v14.i2.420
Peer-review started: October 26, 2021
First decision: December 27, 2021
Revised: January 1, 2022
Accepted: January 29, 2022
Article in press: January 29, 2022
Published online: February 27, 2022
Processing time: 118 Days and 23 Hours
There is no consensus on the definition of acute on chronic liver failure. We had recently shown that the definition proposed by the European Association for the Study of the Liver-Chronic Liver Failure Consortium (EASL-CLIF) is more sensitive to identify acute on chronic liver failure and has a better ability to predict all-cause and short-term mortality than that were proposed by the North American Consortium for the Study of End-Stage Liver Disease.
One of the major criticisms of EASL-CLIF criteria is that it is more complicated to use in clinical practice.
In this study, using a large dataset, our objective was to develop an easier to use model that will be easier to use in clinical practice.
We initially assessed the prevalence of type and frequency of organ failures (OF) using EASL-CLIF. Using the same dataset, we developed modified criteria as described later under 'model development'. Patients were followed until the event date or were censored at the end of 30-ds after listing. To improve the EASL-CLIF criteria, we determined the best cutoff values for serum creatinine and international normalized ratio (INR) that were associated with higher mortality. We used a subset of patients (n = 1445) with information on glomerular filtrations rate to determine the best cutoff values for serum creatinine levels. After identifying the best serum creatinine value, we identified the optimal INR cutoff. Using the above values, we then developed a modified 6-organ failure criteria modified EASL-CLIF (mEACLF). We compared our new mEACLF criteria with the original EASL-CLIF criteria by looking at the distribution of OF, acute-on-chronic liver failure (ACLF) grades, and 30-d all-cause and transplant-free mortality rates.
The area under the receiver operating characteristic (AUROC) of 30-d all-cause mortality by ACLF grades was 0.842 (95%CI: 0.831-0.853) for mEACLF and 0.793 (95%CI 0.781-0.806) for EASL-CLIF (P < 0.0001). The AUROC of 30-d transplant-free mortality by ACLF was 0.859 (95%CI: 0.848-0.869) for mEACLF and 0.805 (95%CI: 0.793-0.817) for EASL-CLIF (P < 0.0001).
Our study showed that EASL-CLIF criteria for ACLF grades could be simplified for ease of use without losing its prognostication capability and sensitivity.
To advance ACLF research in a meaningful manner, it is essential to have easy-to-use criteria. We believe that the modified EASL-CLIF criteria are an important step in that direction.