Published online Aug 18, 2015. doi: 10.4254/wjh.v7.i17.2110
Peer-review started: April 9, 2015
First decision: May 14, 2015
Revised: May 28, 2015
Accepted: June 30, 2015
Article in press: July 2, 2015
Published online: August 18, 2015
Processing time: 135 Days and 16.4 Hours
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and obesity has been established as a risk factor for HCC development. Nonalcoholic steatohepatitis (NASH) is apparently the key link between obesity and hepatocarcinogenesis, and obesity also accelerates HCC development synergistically with other risk factors, such as hepatitis virus infection and alcohol consumption. As an explanation for the pathogenesis of NASH, the so-called “two-hit” theory has been widely accepted, but recently, a better model, the so-called “multiple-hits hypothesis” was proposed, which states that many disease-promoting factors may occur in parallel, rather than consecutively. However, the overall mechanism remains largely unknown. Various cell-cell and organ-organ interactions are involved in the pathogenesis of NASH, and thus appropriate in vivo disease models are essential for a deeper understanding. However, replicating the full spectrum of human NASH has been difficult, as NASH involves obesity, insulin resistance, steatohepatitis, fibrosis, and ultimately HCC, and the lack of an appropriate mouse model has been a considerable barrier to determining the missing links among obesity, NASH, and HCC. In recent years, several innovative mouse models presenting obesity- and NASH-associated HCC have been established by modified diets, chemotoxic agents, genetic manipulation, or a combination of these factors, shedding some light on this complex network and providing new therapeutic strategies. Thus, in this paper, I review the mouse models of obesity- and NASH-associated HCC, especially focusing on recent advances and their clinical relevance.
Core tip: Obesity is a recognized risk factor for the development of hepatocellular carcinoma (HCC) and nonalcoholic steatohepatitis (NASH), which in turn can trigger hepatocarcinogenesis. Once, no appropriate mouse model allowed exploration of the associations among obesity, NASH, and HCC, but several innovative mouse models have become established in recent years. These models have afforded new insights into the mechanisms of disease and have suggested new therapeutic strategies. Therefore, this paper reviews mouse models of obesity- and NASH-associated HCC, focusing on recent advances and clinical relevance thereof.