Zijl FV, Mikulits W. Hepatospheres: Three dimensional cell cultures resemble physiological conditions of the liver. World J Hepatol 2010; 2(1): 1-7 [PMID: 21160950 DOI: 10.4254/wjh.v2.i1.1]
Corresponding Author of This Article
Wolfgang Mikulits, PhD, Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria. wolfgang.mikulits@meduniwien.ac.at
Article-Type of This Article
Editorial
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Hepatol. Jan 27, 2010; 2(1): 1-7 Published online Jan 27, 2010. doi: 10.4254/wjh.v2.i1.1
Hepatospheres: Three dimensional cell cultures resemble physiological conditions of the liver
Franziska van Zijl, Wolfgang Mikulits
Franziska van Zijl, Wolfgang Mikulits, Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
Author contributions: van Zijl F prepared and Mikulits W edited the manuscript.
Supported by the Austrian Science Fund, FWF, No. P19598-B13 and SFB F28, the “Hochschuljubiläumsstiftung der Stadt Wien”, the Herzfelder Family Foundation, and the European Union, FP7 Health Research, No. HEALTH-F4-2008-202047
Correspondence to: Wolfgang Mikulits, PhD, Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria. wolfgang.mikulits@meduniwien.ac.at
Telephone: +43-1-427765250 Fax: +43-1-427765239
Received: July 2, 2009 Revised: November 10, 2009 Accepted: November 17, 2009 Published online: January 27, 2010
Abstract
Studying physiological and pathophysiological mechanisms in the liver on a molecular basis is a challenging task. During two dimensional (2D) culture conditions hepatocytes dedifferentiate rapidly by losing metabolic functions and structural integrity. Hence, inappropriate 2D hepatocellular models hamper studies on the xenobiotic metabolism of the liver which strongly influences drug potency. Also, the lack of effective therapies against hepatocellular carcinoma shows the urgent need for robust models to investigate liver functions in a defined hepatic microenvironment. Here, we summarize and discuss three-dimensional cultures of hepatocytes, herein referred to as hepatospheres, which provide versatile tools to investigate hepatic metabolism, stemness and cancer development.