Published online Feb 27, 2025. doi: 10.4254/wjh.v17.i2.103016
Revised: January 1, 2025
Accepted: January 21, 2025
Published online: February 27, 2025
Processing time: 103 Days and 21.2 Hours
The liver exerts profound influence on skeletal health, while osseous tissues reciprocally modulate hepatic function. This bidirectional metabolic axis between these two organ systems plays a pivotal role in both physiological homeostasis and pathological states.
To investigate and analyze the literatures on liver-bone axis using bibliometrics.
A comprehensive literature search pertaining to the liver-bone axis was conducted using the Science Citation Index Expanded within the Web of Science Core Collection. Subsequently, visualization and bibliometric analyses were performed utilizing VOSviewer (version 1.6.20), Citespace (version 6.2.R4), and the R programming language.
This comprehensive analysis encompasses 855 publications, comprising 694 articles and 161 reviews, authored by 4988 researchers from 425 institutions across 61 countries. The United States and China emerge as the leading nations in terms of publication volume. The University of California system stands out as the most influential institution in liver-bone axis research. Guanabens N is identified as the most prolific author in this field. The annual increase in publications related to the liver-bone axis underscores its growing prominence as a research focus. The study highlights key areas of investigation, including osteoporosis, bone metabolism, non-alcoholic fatty liver disease, and insulin-like growth factor-1, which represent both current and prospective hot topics within this domain.
This investigation employs bibliometric methodologies to conduct a systematic analysis of liver-bone axis literature spanning from 2001 to 2024. The exponential growth in publications over the past two decades underscores the significance of synthesizing research outcomes in this domain. Through rigorous statistical analyses, we delineate fundamental contributions to the field while providing strategic direction for emerging scholars. Furthermore, we illuminate current research trajectories and identify promising future investigative directions. Investigation of the liver-bone axis enhances our comprehension of inter-organ communication networks. Conceptualizing these organs as an integrated system provides profound insights into pathophysiological mechanisms and disease management strategies. This paradigm not only facilitates the development of sophisticated diagnostic modalities but also catalyzes the discovery of novel therapeutic agents targeting these mechanistic pathways, thereby advancing our capacity to diagnose and treat hepatic and skeletal disorders.
Core Tip: This investigation employs bibliometric methodologies to conduct a systematic analysis of liver-bone axis literature. Non-alcoholic fatty liver disease demonstrates particularly strong citation, which is poised to remain a central focus in future investigations of the liver-bone axis. Our research offers insights into inter-organ communication, which may inspire new approaches for the diagnosis and treatment of hepatic and skeletal disorders.