Review
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Jun 27, 2021; 13(6): 620-633
Published online Jun 27, 2021. doi: 10.4254/wjh.v13.i6.620
Glutathione-S-transferases genes-promising predictors of hepatic dysfunction
Vasyl Prysyazhnyuk, Larysa Sydorchuk, Ruslan Sydorchuk, Iryna Prysiazhniuk, Kateryna Bobkovych, Inna Buzdugan, Valentina Dzuryak, Petro Prysyazhnyuk
Vasyl Prysyazhnyuk, Kateryna Bobkovych, Department of Propedeutics of Internal Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
Larysa Sydorchuk, Valentina Dzuryak, Department of Family Medicine, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
Ruslan Sydorchuk, Department of Surgery, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
Iryna Prysiazhniuk, Inna Buzdugan, Department of Internal Medicine and Invectious Diseases, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
Petro Prysyazhnyuk, Department of Medical and Pharmaceutical Chemistry, Bukovinian State Medical University, Chernivtsi 58002, Chernivtsi region, Ukraine
Author contributions: Prysyazhnyuk V was responsible for conception and design, analysis and interpretation of the clinical data, critical revision of the manuscript, final approval of the article; Sydorchuk L, Sydorchuk R analysed and interpreted of the pathophysiological data, critical revision of the manuscript, final approval of the article; Prysiazhniuk I was responsible for acquisition of data, drafting of the article, critical revision of the manuscript, final approval of the article; Bobkovych K, Buzdugan I, Dzhuryak V, and Prysyazhnyuk P were responsible for acquisition of data, critical revision of the manuscript, final approval of the article.
Conflict-of-interest statement: The authors declare no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Vasyl Prysyazhnyuk, DSc, MD, PhD, Professor of the Department of Propedeutics of Internal Diseases, Bukovinian State Medical University, Teatralna square 2, Chernivtsi 58002, Chernivtsi region, Ukraine. prysyaznyuk_v@ukr.net
Received: March 17, 2021
Peer-review started: March 17, 2021
First decision: May 2, 2021
Revised: May 6, 2021
Accepted: June 3, 2021
Article in press: June 3, 2021
Published online: June 27, 2021
Processing time: 97 Days and 6.3 Hours
Abstract

One of the most commonly known genes involved in chronic diffuse liver diseases pathogenesis are genes that encodes the synthesis of glutathione-S-transferase (GST), known as the second phase enzyme detoxification system that protects against endogenous oxidative stress and exogenous toxins, through catalisation of glutathione sulfuric groups conjugation and decontamination of lipid and deoxyribonucleic acid oxidation products. The group of GST enzymes consists of cytosolic, mitochondrial and microsomal fractions. Recently, eight classes of soluble cytoplasmic isoforms of GST enzymes are widely known: α-, ζ-, θ-, κ-, μ-, π-, σ-, and ω-. The GSTs gene family in the Human Gene Nomenclature Committee, online database recorded over 20 functional genes. The level of GSTs expression is considered to be a crucial factor in determining the sensitivity of cells to a broad spectrum of toxins. Nevertheless, human GSTs genes have multiple and frequent polymorphisms that include the complete absence of the GSTM1 or the GSTT1 gene. Current review supports the position that genetic polymorphism of GST genes is involved in the pathogenesis of various liver diseases, particularly non-alcoholic fatty liver disease, hepatitis and liver cirrhosis of different etiology and hepatocellular carcinoma. Certain GST allelic variants were proven to be associated with susceptibility to hepatological pathology, and correlations with the natural course of the diseases were subsequently postulated.

Keywords: Glutathione-S-transferase; Non-alcoholic fatty liver disease; Drug induced liver disease; Liver cirrhosis

Core Tip: Current review provide data regarding impact of genetic polymorphism of glutathione-S-transferase (GST) genes in the pathogenesis of various liver diseases, particularly non-alcoholic fatty liver disease, hepatitis and liver cirrhosis of different etiology and hepatocellular carcinoma. Certain GST allelic variants were proven to be associated with susceptibility to hepatological pathology and correlations with the natural course of the diseases were subsequently postulated.