Systematic Reviews
Copyright ©The Author(s) 2023.
World J Stem Cells. Jun 26, 2023; 15(6): 632-653
Published online Jun 26, 2023. doi: 10.4252/wjsc.v15.i6.632
Table 1 Microfluidic device design and fabrication
Ref.
Manufacturing
Characteristics of microdevices
Fabrication
Main material of device
Technology used
Mold details
Membranes
Dimensions as width × height
Kurosawa et al[18], 2022MIMETAS® (OrganoPlate® 3-lane plate)Unspecified polymerNRNRMembrane-freeTop and bottom channels: 320 μm × 220 μm. Gel channels: 360 μm × 220 μm. PhaseGuides®: 100 μm × 55 μm
Fengler et al[19], 2022MIMETAS® (OrganoPlate® 3-lane plate)Unspecified polymerNRNRMembrane-freeTop and bottom channels: 320 μm × 220 μm. Gel channels: 360 μm × 220 μm. PhaseGuides®: 100 μm × 55 μm (width × height)
Wevers et al[20], 2021MIMETAS® (OrganoPlate® 3-lane plate)Unspecified polymerNRNRMembrane-freeTop and bottom channels: 320 μm × 220 μm. Gel channels: 360 μm × 220 μm. PhaseGuides®: 100 μm × 55 μm
Noorani et al[21], 2021Emulate® (brain on-a-chip)PDMSNRNRPDMS membraneBrain channel: 1 mm × 1 mm. Blood channel: 1 mm × 0.2 mm
Middelkamp et al[22], 2021In housePDMSSoft lithographyMaterial: PMMA. Fabrication: MicrommillingPETE membrane (5 μm thick)Straight bottom channel: 500 μm × 500 μm. Open-top compartment: 500 μm × 1500 μm
Choi et al[23], 2021In housePMMACNCNAPETE membraneHUVEC microchannels: 800 μm × 200 μm. iBMECs microchannels: 800 μm × 500 μm
Motallebnejad et al[24], 2020In houseNRSoft lithographyNRMembrane-free800 μm × 100 μm
Lee et al[25], 2020In housePDMSSoft lithographyMaterial: SU-8. Fabrication: PhotolithographyMembrane-freeFluidic channel: 1340 μm × 150 μm. Main channel: 2200 μm × 150 μm
Jagadeesan et al[26], 2020In housePDMSSoft lithographyMaterial: SU-8. Fabrication: PhotolithographyPDMS membrane (50 μm thick)Top microchannel: 1 mm × 1 mm. Bottom microchannel: 1 mm × 0.2 mm
Vatine et al[27], 2019In housePDMSSoft lithographyMaterial: SU-8. Fabrication: PhotolithographyPDMS membrane (50 μm thick)Top microchannel: 1 mm × 1 mm. Bottom microchannel: 1 mm × 0.2 mm
Park et al[28], 2019In housePDMSSoft lithographyMaterial: Prototherm. Fabrication: 3D printed (Proto labs)PE membrane (20 μm thick)Hollow microchannels: 1 mm × 1 mm. Top channel: 1 mm × 1 mm. Bottom channel: 1 mm × 0.2 mm
Campisi et al[29], 2018In housePDMSSoft lithographyMaterial: Silicon Wafer. Fabrication: NRMembrane-freeFluidic channel: 1000 μm × 150 μm. Main channel: 1300 μm × 150 μm. Distance between posts: 200 μm
Wang et al[30], 2017In houseObjet VeroClear photopolymer3D object printer (Objet 30Pro, Stratasys Ltd., Rehovot, Israel)NAPC membrane (0.4 μm pore size)Main channel: 300 μm × 160 μm
DeStefano et al[31], 2017In housePDMSSoft lithographyMaterial: Aluminum mold. Fabrication: NRMembrane-free390 μm, 450 μm, 550 μm, and 770 μm (different width)
Table 2 Characteristics of the induced pluripotent stem cells used in the blood-brain barrier model, their cultivation and differentiation conditions
Ref.Cell originCell differentiation
BBB components model
iPSCs line
Flask coating
Medium
Supplement
Differentiated cell/medium
Co-culture/medium
Kurosawa et al[18]Human fetal lung fibroblastIMR90-C4MatrigelDay 3-2: mTeSR1-cGMPDay 3: With Y27632iBMECs (107) in ESFMNA
Day 2: Without Y27632
Day 0-5: UMKOSR (20%) + glutamax (0.5%) + NEAA (1%) + β-mercaptoethanol (0.0007%)
Day 6-8: EC+/+ (HESFM)hPDS (1%) + RA (10 μM) + hFGF2 (20 ng/mL)
Fengler et al[19]Human fetal lung fibroblastIMR90-C4MatrigelDay 3-1: mTeSR1Y27632 (10 μM)iBMECs purified1 (106) in HBVP conditionedNA
Day 0-5: UM (DMEM/F12-HEPES)Glutamax + KOSR + NEAA + β-Mercaptoethanol
Day 6: EC+/+ (HESFM)bPPP (1%) + RA (10 μM) + bFGF (20 ng/mL)
Wevers et al[20]Human astrocytes iPSCsGeltrex DMEMFBS (10%) + N2 (1 ×) + P/S (1%)iBMECs (104) in NR mediumAstrocyte-neuron cells (1:4) (1.5 × 104 cells/μL) in N2B27
Human neural stem cellsAx0018Matrigel-GFRDay 0-21: N2B27BDNF (20 ng/mL) + GDNF (10 ng/mL) + AAc (100 μM) + db-cAMP1 (10 μM)
Noorani et al[21]Human fetal lung fibroblastIMR90-C4NRDay 1: E8Y27632 (10 μm)iBMECs (1.5 × 107 cells/mL) in NR mediumPrimary ACs (106 cells/mL) and PCs (3.5 × 105 cells/mL) (3:1) in NR medium
Day 0-6: UMKOSR (20%) + NEAA (1%) + Glutamax (0.5%) + β-Mercaptoethanol (0.1 mM)
Day 7-8: EC+/+ (HESFM)bPPP (1%) + bFGF (20 ng/mL) + RA (10 μm)
Day 9: EC-/- (HESFM)Without bFGF and RA
Middelkamp et al[22]Adult skin fibroblastsGM25256LamininDay 1: DMEM/F12Primocin (0.1 mg/mL) + DX (4 μg/mL) + N2 (1 ×) + MEM-NEAA (1 ×) + NT3-RHP (10 ng/mL) + BDNF-RHP (10 ng/mL)iNeurons (104) in E8Rat ACs (1:1) and HUVECs (4 × 104) in ECGM-2
Day 1 (after two hours): E8RevitaCell (1 ×) + DX (4 μg/mL)
Day 3-38: NeurobasalDay 3: Primocin (0.1 mg/mL) + B-27 (1 ×) serum free + glutamax (1 ×) + DX (4 μg/mL) + NT-3 (10 ng/mL) + BDNF (10 ng/mL) + arabinoside hydrochloride (2 μm)
Day 5: Refresh medium without arabinoside hydrochloride (2 μm)
Day 9-38: Refresh medium with 2.5% fetal calf serum
Choi et al[23]Human fetal lung fibroblastIMR90-C4MatrigelDay 3: mTeSR1™-E8™NRiBMECs purified1 (1.2 × 107 cells/mL) in HESFMAC (106 cells/mL) in EC-/-
Day 0-5: UM (DMEM/F12)KOSR (20%) + NEAA (100x) + glutamax (0.5%) + β-Mercaptoethanol (0.007%) (5% O2)
Day 6-8: EC+/+ (HESFM)Human serum (1%) + bFGF (20 ng/mL) + RA (10 μm) (5% O2)
Day 9: EC-/- (HESFM)Without bFGF and RA
Motallebnejad et al[24]Human fetal lung fibroblastIMR90-C4MatrigelDays 3-1: mTeSR1-cGMPDay 3: Y27632 (10 μm)iBMECs purified1 in NR mediumNA
Day 2: Without Y27632
Days 0-5: UM NR
Days 6-8: EC+/+ (HESFM)Days 6-7: hPDS (1%) + RA (10 μM) + FGF2 (20 ng/mL)
Day 8: bPPP (1%) or FBS (2%) + FGF (20 ng/mL) + RA (10 μM)
Day 9: EC-/- (HESFM)Without bFGF and RA
Healthy human African American male from the bone marrow CD34+ cellsACS-1024LN 511-E8 or LN 411-E8 or collagen IV + fibronectinHESFMDay 8: bPPP (1%) or FBS (2%) + FGF (20 ng/mL) + RA (10 μM)
Day 9: Without bFGF and RA
Lee et al[25]Endothelial cellshiPSC-ECsHuman fibronectinVascuLife VEGFiCell media supplementhiPSC-ECs (6 × 106 cells/mL) in VascuLife VEGF with thrombinPCs and ACs (106 cells/mL) in VascuLife VEGF with thrombin
Jagadeesan et al[26]Neural progenitorsEZ-SpheresNADay 1: EZ-sphere medium (DMEM/F12)bFGF (100 ng/mL) + EGF (100 ng/mL) + heparin (5 μg/mL) + B27 (2%)iNPCs (106 cells/mL) in NDMACs (9 × 105 cells/mL) and PCs (3 × 105 cells/mL) in in DMEM
B27 (2%) + vitamin A + N2 (1%) + hBDNF, (20 ng/mL)
NRhiPSCsBasement membrane matrix-coatedDay 1: mTeSR1NRiBMECs [(14-20) × 106 cells/mL] in EC-/- (HESFM)
Day 2-8: UM (DMEM/F12)KOSR (10%) + NEAA (1%) + glutamine (0.5%) + β-Mercaptoethanol (100 μm)
Day 9-10: EC+/+ (HESFM)bPPP (1%) + bFGF (20 ng/mL) + RA (10 μM)
Day 11: EC-/- (HESFM)Without bFGF and RA
Vatine et al[27]Adult skin fibroblastsCS03iCTRMatrigelDay 3: mTeSR1NRiNPCs (106 cells/mL) in NDM and iBMECs (1.4 × 104 cells/mL)ACs (9 × 105 cells/mL) and PCs (3 × 105 cells/mL) in DMEM
CS83iCTR
CS03iCTRmut, 2
CS01iMCT8
CS01iMCT8cor, 2
Peripheral bloodCS0172iCTR
CS0188iCTRDay 0: UMWithout bFGF
CS0617iCTR
Huntington’s diseaseCS81iHD
Park et al[28]Human fetal lung fibroblastIMR90-C4MatrigelDay 3: mTeSR1NR (5% O2)iBMECs purified1 (2.3 × 107 cells/mL) in ECACs (7 × 105 cells/mL) and PCs (3 × 105 cells/mL) in ACM
Day 0-6: UM (DMEM/F12)KOSR (100 mL) + NEAA (5 mL) + glutamax (2.5 mL) + β-Mercaptoethanol (3.5 μL) (5% O2)
Day 7-9: EC+/+RA (5% O2)
Campisi et al[29]Blood from 30-39-year-old healthy femaleshiPSC-ECsHuman fibronectinVascuLife VEGFiCell media supplement + VEGF (50 ng/mL)hiPSC-ECs (2 × 106 cells/mL) in EBM-2Monoculture hiPSC-ECs (6 × 106 cells/mL) in EBM-2
PCs (2 × 106 cells/mL) in EGM-2 MV
PCs and ACs (2 × 106 cells/mL) in EGM-2 MV
Wang et al[30]Human fetal lung fibroblastIMR90-C4MatrigelDay 3: mTeSR1NRiBMECs in HESFMRat primary ACs in AGM
Day 0-5: UM (DMEM/F12)HEPES + KOSR (20%) + MEM-NEAA (1 ×) + L-glutamine (1 mM) + β-Mercaptoethanol (0.1 mM)
Day 6-8: EC+/+ (HESFM)hPDS (1%) + bFGF (20 ng/mL) + RA (10 μM)
DeStefano et al[31]CD34 positive bone marrowBC1-hiPSCsMatrigelDay 4-3: mTeSR1-E8NRiBMECs (105) in ECNA
Day 3: Y27632 (10 μm)
Day 0-5: UM (DMEM/F12)KOSR (20%) + NEAA (1%) + L-Glutamine (0.5%) + β-Mercaptoethanol (0.84 μm)
Day 6-7: EC+/+ (HESFM)hPDS (1%) + bFGF (20 ng/mL) + RA (10 μm)
Day 8: EC (HESFM)DB-cAMP (400 μm) or Y27632 (10 μm)
Table 3 Applications of blood-brain barrier microfluidic three-dimensional models using induced pluripotent stem cells
Ref.
Application
Characterization
Evaluation technique
Outcomes
Kurosawa et al[18]Build and evaluate a BBB 3D in vitro modelCapillary structure formation and tight junction proteins expressionImmunocytochemistryFormation of the capillary structure, functional tight proteins; lower expression of ABC transporters than levels found in vivo, except for BCRP; expression of functional SLC transporters
Transport proteins and receptors expressionImmunocytochemistry
qPCR
Tight junction functionalityFluorescence (lucifer yellow and antipyrine)
HPLC-MS/MS (test-drug transport)
Transport proteins functionHPLC-MS/MS (test-drug transport)
Fengler et al[19]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryCapillary diameter CA. 40 times larger than in vivo brain vessels; physiologically relevant TEER values; physiologically similar localization of BCRP and GLUT-1 proteins. Promising BBB model for future drug screening tests
Microvessel integrityFluorescence (DEX-A647 and sodium fluorescein)
Microvessel permeabilityDiazepam, Emricasan, Ac-YVAD-CMK, Z-DEVD-FMK, ZVAD (OH)-FMK, Staurosporine, and IL-1β
Tight junction functionalityELISA (Diazepam)
TEER measurements
Wevers et al[20]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryBarrier functionality similar to that found in vivo; microfluidic model suitable for evaluating disruption of the BBB; successful ischemic stroke modeling. Potential use for modeling the BBB under sub-optimal conditions (disease) and for evaluating potential therapies
Tight junction functionalityTEER measurements
Microvessel permeabilityFluorescence (sodium fluorescein)
Transport proteins expressionFluorescence: P-gp inhibition
qPCR
Neuronal functionalityCalcium fluorescence imaging
Ischemic stroke modelingMicrovessel permeabilityFluorescence (FITC-dextran)
Mitochondrial membrane potentialLuminescence (CellTiter-GLO)
ATP quantification
Noorani et al[21]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryBBB functionality remains intact for up to 7 d and is similar to that found in vivo; a more physiologically relevant BBB model; shear stress contributes positively to BBB tightness
Microvessel permeabilityUPLC-MS/MS: [13C12] sucrose and [13C6] mannitol
Transport proteins expressionImmunocytochemistry
Fluorescence: P-gp inhibition
Middelkamp et al[22]Compare 2D cultures to microfluidic chip culturesNeuronal differentiation and characterization of HUVECsImmunocytochemistryCulture in microfluidic chips promotes gene expression that more closely resembles that found in vivo
RNA sequencing
Transcriptomic analysis
Choi et al[23]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistrycECMTE membrane with 10 m pores in microfluidic device were successful in mimicking the in vivo BBB, also allowing for cancer cell tissue migration. Promising BBB model for studying cancer metastasis, cell communication, and migration
qPCR
Tight junction functionalityFluorescence (lucifer yellow)
Transendothelial migration of cancer cells (CellMask)
Immunocytochemistry
Transport proteins expressionImmunocytochemistry
Motallebnejad et al[24]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryLM511-E8 ECM contributes to long-lasting endothelial cell and BBB function, in addition to promoting better shear stress responses. Authors recommend the use of LM511-E8 ECM for future studies involving BBB function
Fluorescence (F-actin staining)
qPCR
Tight junction functionalityTEER measurements
Fluorescence (rhodamine B-labeled neutral dextran)
Lee et al[25]BBB permeability to polymer nanoparticlesTight junction and transport proteins expressionqPCRFast analysis of polymer nanoparticles permeability; physiologically reliable BBB model
Permeability to polymer nanoparticlesFluorescence (polymer nanoparticles and FITC-dextran)
3D fluorescence intensity maps
Jagadeesan et al[26]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistrySuccessful fabrication of BBB model personalized for different human individuals; BBB models were able to mimic physiological differences between healthy and ill individuals
Tight junction functionality and microvessel permeabilityFluorescence: FITC-dextran
Transport proteins expressionImmunocytochemistry
Neuronal differentiation
Vatine et al[27]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistrySuccessful fabrication of BBB model personalized for different human individuals; BBB models were able to mimic physiological differences between healthy and ill individuals
Transcriptional analysis
Microvessel permeability and tight junction functionalityFluorescence (FITC-dextran and 2NDBG)
ELISA (human albumin, IgG and transferrin)
LC-MS/MS (T3, colchicine, levetiracetam and retigabine)
Transmission light microscopy
TEER measurements
Immunocytochemistry
Transport proteins expressionImmunocytochemistry
Transcriptional analysis
Transport protein functionFluorescence (rhodamine-123)
Whole-blood neuronal toxicityColorimetric assay (quantification of lactic dehydrogenase)
Neuronal functionalityImmunocytochemistry
Calcium fluorescence imaging
Park et al[28]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryBBB functionality remains intact for up to 7 d. Promising BBB model for future drug and antibody transport studies
Multiplex qPCR
MS (proteomics)
Tight junction functionality and microvessel permeabilityElectron transmission microscopy
TEER measurements
Fluorescence (dextrans, cetuximab, angiopep-2, MEM75, 13E4)
ELISA (dextrans, cetuximab)
Transport proteins expressionImmunocytochemistry
MS
Transport proteins functionFluorescence (rhodamine-123 and doxorubicin)
Campisi et al[29]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryTri-culture of human iPSC-derived endothelial cells, astrocytes and pericytes spontaneously arranged into a BBB-like model. Promising BBB model for future preclinical experiments
qPCR
Tight junction functionality and microvessel permeabilityFluorescence (FITC-dextran)
Characterization of astrocytes and pericytesImmunocytochemistry
Wang et al[30]Build and evaluate a BBB 3D in vitro modelTight junction proteins expressionImmunocytochemistryPumpless media perfusion system that resembles the blood residence time within brain tissues; physiologically relevant TEER values maintained for up to 10 d. Promising BBB model for future drug permeability studies
Tight junction functionality and microvessel permeabilityTEER measurements
Fluorescence: FITC-dextran and doxorubicin
LC-MS/MS (caffeine and cimetidine)
DeStefano et al[31]Evaluate BBB upon shear stressCharacterization of iPSC-derived endothelial cells morphology and functionMicroscopy (time-lapse imaging analysis using ImageJ)BBB endothelial cells display unique features that differ from endothelial cells from other tissues; shear stress plays a key role in BBB-like function in microfluidic models
Tight junction proteins expressionImmunocytochemistry
Western blot
qPCR
Transport proteins expressionqPCR