Abou-Mrad Z, Bou Gharios J, Moubarak MM, Chalhoub A, Moussalem C, Bahmad HF, Abou-Kheir W. Central nervous system tumors and three-dimensional cell biology: Current and future perspectives in modeling. World J Stem Cells 2021; 13(8): 1112-1126 [PMID: 34567429 DOI: 10.4252/wjsc.v13.i8.1112]
Corresponding Author of This Article
Wassim Abou-Kheir, MSc, PhD, Associate Professor, Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Beirut 1107-2020, Lebanon. wa12@aub.edu.lb
Research Domain of This Article
Cell Biology
Article-Type of This Article
Minireviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Culturing done on matrices (Matrigel, collagen I, hyaluronic acid, etc.); Addition of culture supplements including FGF, EGF, Noggin, N2, B27, etc.
Disease mechanism; Drug discovery and toxicology; Developmental, stem cell biology and regenerative medicine; Infectious disease
Oxygen and nutrient distribution underdeveloped; Cellular microenvironments are challenging to replicate; Imaging difficulties; Expensive and time consuming assay
Generation of tumors in cerebral organoids using CRISPR/Cas9 technology; tumors exhibited invasive phenotype and replicated the hallmarks of tumorigenesis in vivo
Overexpression of GFI1/c-MYC (GM) and OTX2/c-MYC (OM) gene combinations
OM as a novel driver gene combination required for Group 3 MB tumorigenesis; GM and OM overexpression induces tumor formation in mouse cerebellum; SMARCA4 and Tazemetostat reduces OM tumorigenesis
GLICO recapitulate primary human GBM with in a primitive brain microenvironment; GSCs exhibit high resistance to drug and radiation-inducedgenotoxic stress; GSCs form tumor by relocating to the human cerebral organoid, invasion and proliferation within themicroenvironment of the GLICO
Generation of brain cancer chip that exhibit diffusion prevention mechanism to culture GBM-patient derived 3D spheroids; treatment with TMZ and bevacizumab (Avastin, BEV) in combination enhanced GBM cell death compared to TMZ alone
Generation of microfluidic device to behavior models that simulate blood flow through the tumor; deprivation of nutrients and oxygen induces pseudopalisade formation; pseudopalisading process renders GBM cells to become of more aggressive behavior
Generation of microfluidic angiogenesis model that simulate GBM tumor angiogenesis and macrophage-associated immunosuppression within GBM tumor microenvironment; GL261 and CT-2A GBM-like tumors promote angiogenesis through driving M2-like macrophage polarization; TGF-b1, and surface integrin (avb3) endothelial-macrophage interactions regulates inflammation-mediated angiogenesis through Src-PI3K-YAP signaling; inhibition of integrin (avb3) and cytokine receptor (TGFb-R1) repress GBM tumor neovascularization
Generation of glioma perivascular niches on a chip; Perivascular niches maintain the pluripotent state of GSCs; Stronger chemoresistance of GSCs against TMZ associates with endothelial cell co-culturing, GSCs neurosphere formation and the expression of 6-O-methylguanine and Bmi-1 gene
Generation of complex cancerous-tissue constructs constituting brain ECM composition, oxygen gradient-generating system, cancer-stroma structure; exhibited patient-specific response upon the treatment with drug combinations, chemoradiation and TMZ
Table 5 Features and characteristics comparison between spheroids and organoids
Spheroids
Organoids
Cells used
Cell lines or CSCs
Embryonic stem cells, induced pluripotent stem cells or CSCs
Physiologic relevance
Lower
Higher
Tumor heterogeneity
Lower
Higher
Technique difficulty
Lower
Higher
Cost
Lower
Higher
Time
Weeks
1-3 mo
Genetic manipulation
Moderately available
Moderately available
Biobanks
Not available (cells are difficult to maintain long-term)
Available
Advantages
Cost effective; Highly accessible; Good for high throughput drug testing
Retains tumor heterogeneity; Better simulation of the physiological environment
Disadvantages
Hard to maintain long-term; Not as representative of the physiologic environment
More complex; Higher failure rate; May give variable results
Citation: Abou-Mrad Z, Bou Gharios J, Moubarak MM, Chalhoub A, Moussalem C, Bahmad HF, Abou-Kheir W. Central nervous system tumors and three-dimensional cell biology: Current and future perspectives in modeling. World J Stem Cells 2021; 13(8): 1112-1126