Copyright
©The Author(s) 2019.
World J Stem Cells. Aug 26, 2019; 11(8): 476-490
Published online Aug 26, 2019. doi: 10.4252/wjsc.v11.i8.476
Published online Aug 26, 2019. doi: 10.4252/wjsc.v11.i8.476
Table 1 Possible molecules and their role in chronic myeloid leukemia stem cells-bone marrow microenvironment interaction
Target | Source | Role | Ref. |
G-CSF | CML LSC | Mobilization | [15] |
CD26 | CML LSC | Mobilization | [16] |
β1-integrins | CML LSC | Homing | [19] |
Selectins | CML LSC, endothelial cells | Homing | [20] |
CD44 | CML LSC | Homing | [20] |
Chemokines (MIP-1α, MIP-1β, etc) | BMM, CML LSC | Growth of CML LSC | [15,25] |
Cytokines (IL-1α, IL-1β, TNFα, etc) | BMM, CML LSC | Growth of CML LSC | [15,25] |
BMP2/4 | MSC, CML LSC | Drug resistance | [26] |
FGF2 | MSC | Drug resistance | [28] |
PIGF | MSC | Proliferation, metabolism | [29] |
miR-126 | CML LSC, endothelial cells | Dormancy | [30] |
HIF-1 | CML LSC | Growth of CML LSC | [15] |
Jagged-1 | Osteoblast | Dormancy | [94] |
Parathyroid hormone | BMM | CML LSC removal | [95] |
WNT | BMM | Growth of CML LSC | [21] |
N-cadherin | CML LSC | Drug resistance | [21] |
Table 2 Possible molecules and their role in acute myeloid leukemia stem cells-bone marrow microenvironment interaction
Target | Source | Role | Ref. |
VLA-4 | AML LSCs | Homing | [37] |
CD44 | AML LSCs | Homing | [38,96] |
CXCR4 | AML LSCs | Adhesion | [40] |
Jagged-1 | Osteoblast | Proliferation | [42] |
CXCR2 | AML LSCs | Proliferation, survival | [44] |
Parathyroid hormone | BMM | OB proliferation, LSCs growth | [97] |
Proangiogenesis factors (VEGF, HGF, BFGF, VEGFR) | AML LSCs, BMM | Endothelial and LSC proliferation | [47,48] |
Cytokines (IL-6, IL1β, TNFα, G-CSF, GM-CSF) | AML LSCs, BMM | Angiogenesis, LSC proliferation | [51] |
Tie-2 | Osteoblast | LSCs quiescent | [46] |
CD36 | AML LSCs | Energy source provider | [56] |
Table 3 Chronic myeloid leukemia and acute myeloid leukemia stem cell markers for detection and selective targeting
Target | CD | CML LSC | AML LSC | Normal HSC | Normal progenitor | Ref. |
IL-2Rα | CD25 | + | + | - | +/- | [59,69] |
DPP4 | CD26 | + | - | - | - | [16] |
Siglec-3 | CD33 | + | + | + | + | [98] |
SCARB3 | CD36 | + | + | +/- | + | [99] |
Pgp-1 | CD44 | + | + | + | + | [38] |
IAP | CD47 | + | + | + | + | [70] |
Campath-1 | CD52 | + | + | + | + | [100] |
C1qR1 | CD93 | + | + | +/- | +/- | [101] |
Tactile | CD96 | - | + | - | - | [66] |
MIC2 | CD99 | - | + | + | + | [102] |
SCFR | CD117 | + | + | +/- | +/- | [64] |
IL-3Rα | CD123 | + | + | +/- | +/- | [68] |
CLL-1 | - | +/- | + | +/- | + | [67] |
TIM-3 | - | - | + | +/- | +/- | [71] |
IL-1RAP | - | + | + | - | + | [60,103] |
Table 4 A draft of compounds under clinical trial in leukemic stem cell bone marrow microenvironment target therapy
Disease | Target | Compound | Clinical trial ID |
CML | CXCR4 | BL-8040 | NCT02115672 |
CML | IL-1RAP | CAR-LMC | NCT02842320 |
CML | JAK-inhibitor | Ruxolitinib | NCT01702064, NCT03654768, NCT01751425, NCT03610971 |
AML | CXCR4 | Plerixafor (AMD3100) | NCT01455025 |
AML | Hypoxia | TH-302 | NCT01149915 |
AML | VEGF | Aflibercept | NCT00601991 |
AML | VLA-4 | AS101 | NCT01010373 |
AML | Ang-1/2 | Trebananib (AMG 386) | NCT01555268 |
AML | CD47 | SRF231, TTI-621, CC90002, Hu5F9-G4 | NCT03512340, NCT02663518, NCT02367196, NCT02678338, NCT03248479 |
AML | Notch | LY3039478, MK0752 | NCT01695005, NCT00100152 |
AML | XIAP | AEG35156 | NCT00363974 |
AML | BH3 | ABT-199 | NCT01994837 |
AML | Pan FGFR | LY274455 | NCT01212107 |
- Citation: Houshmand M, Blanco TM, Circosta P, Yazdi N, Kazemi A, Saglio G, Zarif MN. Bone marrow microenvironment: The guardian of leukemia stem cells. World J Stem Cells 2019; 11(8): 476-490
- URL: https://www.wjgnet.com/1948-0210/full/v11/i8/476.htm
- DOI: https://dx.doi.org/10.4252/wjsc.v11.i8.476