Copyright
©The Author(s) 2022.
World J Stem Cells. Apr 26, 2022; 14(4): 267-286
Published online Apr 26, 2022. doi: 10.4252/wjsc.v14.i4.267
Published online Apr 26, 2022. doi: 10.4252/wjsc.v14.i4.267
Figure 1 Enzymes and transporters that are potential therapeutic targets in cancer stem cell-based therapy.
The red and green triangles indicate the enzyme and transporter, respectively, which may serve as potential targets. IDO1: Indoleamine-2,3-dioxygenase-1; TDO2: Tryptophan 2,3-dioxygenase; PHGDH: Phosphoglycerate dehydrogenase; PSAT1: Phosphoserine aminotransferase; PSPH: P phosphatase; GOT: Aspartate aminotransferase; SHMT: Serine hydroxymethyl transferase; GLDC: Glycine decarboxylase; GLS: Glutaminase; CBS: Cystathionine β synthase; CGL: Cystathionine γ lyase; MTase: Methyltransferase; MAT: Methionine adenosyltransferase; GDH: Glutamate dehydrogenase; GCL: Glutamate cysteine ligase; GSS: Glutathione synthetase; ASCT2: Alanine-serine-cysteine transporter 2; xCT: Cystine-glutamate antiporter; Glut: Glucose transporter; THF: Tetrahydrofolate; 1C-THF: One-canton tetrahydrofolate; HCy: Homocysteine; SAH: S-adenosine homocysteine; Met: Methionine; SAM: S-adenosine methionine; Cys–Cys: Cystine; GSH: Glutathione; α-KG: α-ketoglutarate; TCA cycle: Tricarboxylic acid cycle.
- Citation: Zhang Q, Li W. Correlation between amino acid metabolism and self-renewal of cancer stem cells: Perspectives in cancer therapy. World J Stem Cells 2022; 14(4): 267-286
- URL: https://www.wjgnet.com/1948-0210/full/v14/i4/267.htm
- DOI: https://dx.doi.org/10.4252/wjsc.v14.i4.267