For: | Pipino C, Pandolfi A. Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential. World J Stem Cells 2015; 7(4): 681-690 [PMID: 26029340 DOI: 10.4252/wjsc.v7.i4.681] |
---|---|
URL: | https://www.wjgnet.com/1948-0210/full/v7/i4/681.htm |
Number | Citing Articles |
1 |
Xiaoyang Liu, Zongke Zhou, Wei-Nan Zeng, Qin Zeng, Xingdong Zhang. The role of toll-like receptors in orchestrating osteogenic differentiation of mesenchymal stromal cells and osteoimmunology. Frontiers in Cell and Developmental Biology 2023; 11 doi: 10.3389/fcell.2023.1277686
|
2 |
Ron Gilat, Ferran Abat, Jorge Chahla, Eric D. Haunschild, Lior Laver, Brian Cole. Basketball Sports Medicine and Science. 2020; : 561 doi: 10.1007/978-3-662-61070-1_45
|
3 |
Ganesh Narayanan, Varadraj N. Vernekar, Emmanuel L. Kuyinu, Cato T. Laurencin. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews 2016; 107: 247 doi: 10.1016/j.addr.2016.04.015
|
4 |
Minglu Hao, Linyuan Xue, Xiaobo Wen, Li Sun, Lei Zhang, Kunyue Xing, Xiaokun Hu, Jiazhen Xu, Dongming Xing. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomaterialia 2024; 183: 1 doi: 10.1016/j.actbio.2024.05.041
|
5 |
Nassem Ahamad, Brij B Singh. Calcium channels and their role in regenerative medicine. World Journal of Stem Cells 2021; 13(4): 260-280 doi: 10.4252/wjsc.v13.i4.260
|
6 |
Kyu‐Hyun Han, Ae‐Kyeong Kim, Min‐Hee Kim, Do‐Hyung Kim, Ha‐Nl Go, Dong‐Ik Kim. Enhancement of angiogenic effects by hypoxia‐preconditioned human umbilical cord‐derived mesenchymal stem cells in a mouse model of hindlimb ischemia. Cell Biology International 2016; 40(1): 27 doi: 10.1002/cbin.10519
|
7 |
Prabin Upadhyaya, Alessandra Di Serafino, Luca Sorino, Patrizia Ballerini, Marco Marchisio, Laura Pierdomenico, Liborio Stuppia, Ivana Antonucci. Genetic and epigenetic modifications induced by chemotherapeutic drugs: human amniotic fluid stem cells as an in-vitro model. BMC Medical Genomics 2019; 12(1) doi: 10.1186/s12920-019-0595-3
|
8 |
Tanongsak Laowanitwattana, Sirinda Aungsuchawan, Suteera Narakornsak, Runchana Markmee, Waleephan Tancharoen, Junjira Keawdee, Nonglak Boonma, Witoon Tasuya, Lamaiporn Peerapapong, Nathaporn Pangjaidee, Peeraphan Pothacharoen. Osteoblastic differentiation potential of human amniotic fluid-derived mesenchymal stem cells in different culture conditions. Acta Histochemica 2018; 120(8): 701 doi: 10.1016/j.acthis.2018.07.006
|
9 |
Min‐Kyoung Song, Hyun Jin Sun, Sun Wook Cho. Conditioned medium of amniotic fluid‐derived stromal cells exerts a bone anabolic effect by enhancing progenitor population and angiogenesis. Journal of Tissue Engineering and Regenerative Medicine 2022; 16(10): 923 doi: 10.1002/term.3340
|
10 |
Dong Joon Lee, Yonsil Park, Wei-Shou Hu, Ching-Chang Ko. Osteogenic Potential of Multipotent Adult Progenitor Cells for Calvaria Bone Regeneration. Advances in Medicine 2016; 2016: 1 doi: 10.1155/2016/2803081
|
11 |
Shiva Gholizadeh-Ghaleh Aziz, Ezzatollah Fathi, Mohammad Rahmati-Yamchi, Abolfazl Akbarzadeh, Zahra Fardyazar, Maryam Pashaiasl. An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artificial Cells, Nanomedicine, and Biotechnology 2017; 45(4): 765 doi: 10.1080/21691401.2016.1216857
|
12 |
Ngoc Bich Vu, Ha Thi-Ngan Le, Thuy Thi-Thanh Dao, Lan Thi Phi, Ngoc Kim Phan, Van Thanh Ta. Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology 2017; 1083: 1 doi: 10.1007/5584_2017_63
|
13 |
Kantirat Yaja, Sirinda Aungsuchawan, Suteera Narakornsak, Peraphan Pothacharoen, Rungusa Pantan, Waleephan Tancharoen. Combination of human platelet lysate and 3D gelatin scaffolds to enhance osteogenic differentiation of human amniotic fluid derived mesenchymal stem cells. Heliyon 2023; 9(8): e18599 doi: 10.1016/j.heliyon.2023.e18599
|
14 |
Mojgan Barati, Fakher Rahim. Human Amniotic Fluid for the Treatment of Hospitalized, Symptomatic, and Laboratory-verified SARS-CoV-2 Patients. The Open Biology Journal 2021; 9(1): 36 doi: 10.2174/1874196702109010036
|
15 |
Roberto Berebichez-Fridman, Ricardo Gómez-García, Julio Granados-Montiel, Enrique Berebichez-Fastlicht, Anell Olivos-Meza, Julio Granados, Cristina Velasquillo, Clemente Ibarra. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells—Their Current Uses and Potential Applications. Stem Cells International 2017; 2017: 1 doi: 10.1155/2017/2638305
|
16 |
Kenneth S. Ogueri, Tahereh Jafari, Jorge L. Escobar Ivirico, Cato T. Laurencin. Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering and Translational Medicine 2019; 5(2): 128 doi: 10.1007/s40883-018-0072-0
|
17 |
Domitilla Mandatori, Letizia Penolazzi, Caterina Pipino, Pamela Di Tomo, Sara Di Silvestre, Natalia Di Pietro, Sara Trevisani, Marco Angelozzi, Mariangela Ucci, Roberta Piva, Assunta Pandolfi. Menaquinone‐4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems. Journal of Tissue Engineering and Regenerative Medicine 2018; 12(2): 447 doi: 10.1002/term.2471
|
18 |
Samaneh Hosseini, Mohamadreza Baghaban Eslaminejad. Bone and Cartilage Regeneration. Stem Cells in Clinical Applications 2016; : 205 doi: 10.1007/978-3-319-40144-7_10
|
19 |
Kevin D. Plancher. CORR Insights®: Anchorless Arthroscopic Transosseous and Anchored Arthroscopic Transosseous Equivalent Rotator Cuff Repair Show No Differences in Structural Integrity or Patient-reported Outcomes in a Matched Cohort. Clinical Orthopaedics & Related Research 2020; 478(6): 1304 doi: 10.1097/CORR.0000000000001253
|