BPG is committed to discovery and dissemination of knowledge
Retrospective Cohort Study
Copyright ©The Author(s) 2026.
World J Gastroenterol. Jan 21, 2026; 32(3): 115527
Published online Jan 21, 2026. doi: 10.3748/wjg.v32.i3.115527
Table 1 Characteristics of patients in the thromboembolism group and non-thromboembolism group, mean ± SD
Variable
Thromboembolism group (n = 294)
Non-thromboembolism group (n = 854)
P value
Age (years)73.10 ± 11.5564.85 ± 16.97< 0.001
Gender (male) (%)64.0769.560.088
Heart rate (beats/minute)83.21 ± 15.1886.92 ± 18.870.002
Hemoglobin (g/L)80.15 ± 27.4790.01 ± 30.61< 0.01
Albumin (g/L)3306 ± 6.6234.91 ± 9.870.003
Intensive care unit admission (%)22.3710.77< 0.001
History of anticoagulant drug use (%)58.6425.41< 0.001
D-dimer level (μg/L)4177.46 ± 8129.902114.73 ± 6339.46< 0.001
Length of hospital stay (days)12.90 ± 9.528.57 ± 6.88< 0.001
Use of hemostatic drugs (%)10.1711.820.04
Thromboembolism history (%)35.2510.42< 0.001
Alanine aminotransferase (U/L)23.19 ± 50.0423.55 ± 64.620.931
Creatinine (μmoI/L)121.59 ± 123.56115.05 ± 144.020.486
International normalized ratio5.57 ± 6.621.17 ± 0.640.044
Prothrombin time (seconds)14.03 ± 9.7313.56 ± 6.970.376
History of nonsteroidal anti-inflammatory drug use (%)15.9317.680.493
Shock (%)10.1710.770.772
Red cell distribution width (%)15.56 ± 2.9915.09 ± 5.040.13
Education (%)19.5215.690.09
Table 2 Characteristics of machine learning models in the internal validation sets, mean (95%CI)
Model
Accuracy
Precision
Sensitivity
Specificity
F1
Area under the receiver operating characteristic curve
P value
L1 regularized logistic regression0.736 (0.697-0.771)0.43 (0.362-0.501)0.716 (0.628-0.79)0.741 (0.698-0.781)0.5370.793 (0.750-0.837)< 0.01
Support vector machines0.701 (0.661-0.738)0.401 (0.340-0.465)0.802 (0.72-0.864)0.673 (0.627-0.716)0.5340.804 (0.757-0.851)< 0.01
Categorical boosting0.754 (0.716-0.789)0.455 (0.386-0.526)0.75 (0.664-0.82)0.755 (0.712-0.794)0.5670.818 (0.777-0.859)< 0.01
Random forest0.678 (0.638-0.716)0.38 (0.321-0.443)0.793 (0.711-0.857)0.647 (0.6-0.691)0.5140.798 (0.755-0.842)< 0.01
Extreme gradient boosting0.71 (0.67-0.746)0.402 (0.338-0.47)0.724 (0.637-0.797)0.706 (0.661-0.747)0.5170.772 (0.723-0.821)< 0.01
D-dimer0.621 (0.579-0.661)0.309 (0.253-0.371)0.621 (0.530-0.704)0.621 (0.574-0.666)0.4130.618 (0.552-0.683)-
Table 3 Characteristics of machine learning models in the external validation sets, mean (95%CI)
Model
Accuracy
Precision
Sensitivity
Specificity
F1
Area under the receiver operating characteristic curve
P value
L1 regularized logistic regression0.78 (0.728-0.825)0.395 (0.296-0.504)0.711 (0.566-0.823)0.793 (0.737-0.84)0.5080.805 (0.735-0.875)< 0.01
Support vector machines0.77 (0.717-0.815)0.389 (0.295-0.492)0.778 (0.637-0.875)0.768 (0.71-0.817)0.5190.806 (0.727-0.884)< 0.01
Categorical boosting0.826 (0.778-0.866)0.466 (0.343-0.592)0.6 (0.455-0.73)0.869 (0.82-0.906)0.5240.815 (0.746-0.885)< 0.01
Random forest0.738 (0.683-0.785)0.344 (0.255-0.445)0.711 (0.566-0.823)0.743 (0.683-0.794)0.4640.804 (0.736-0.872)< 0.01
Extreme gradient boosting0.727 (0.672-0.776)0.318 (0.23-0.421)0.622 (0.476-0.749)0.747 (0.688-0.798)0.4210.746 (0.661-0.831)< 0.01
D-dimer0.734 (0.68-0.782)0.258 (0.166-0.379)0.356 (0.232-0.502)0.806 (0.751-0.851)0.2990.51 (0.403-0.617)-