BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2025.
World J Gastroenterol. Nov 21, 2025; 31(43): 112000
Published online Nov 21, 2025. doi: 10.3748/wjg.v31.i43.112000
Table 1 Summary of artificial intelligence models for acute appendicitis: Methods and performance metrics
No.
Ref.
Year
Country
Dataset size
Variables used
AI methods
Performance metrics
1Sibic et al[84]2025TurkeyAAp: 400; non-AAp: 400Demographic, and radiological data [CT images (CNN architectures)]MobileNet v2, ResNet v2, EfficientNet b2, Inception v3 (MobileNet v2 best results)Accuracy: 79.1; precision: 82.0; sensitivity: 74.7; F1 score: 78.1; AUC: 0.877
2Navaei et al[17]2025IranAAp: 465; non-AAp: 317Demographic, clinical and biochemical dataDT, RF, SVM, KNN, GBM, AdaBoost, XGBoost, LightBoost, CatBoost (RF best results)Accuracy: 94.6; sensitivity: 93.9; specificity: 95.7; F1 score: 93.6
3Li et al[8]2025ChinaCompl AAp: 88; uncompl AAp: 213Demographic, clinical and biochemical dataLR, SVM, RF, DT1, GBM, KNN, GNB, MLP (RF best results)Accuracy: 81.0; sensitivity: 76.0; specificity: 83.0; F1 score: 74.0; AUC: 0.840
4Kucukakcali et al[86]2025TurkeyCompl AAp: 34; uncompl AAp: 65; non-AAp: 41Demographic and biochemical dataSGB (non-AAp vs AAp)Accuracy: 96.3; sensitivity: 94.7; specificity: 100; F1 score: 97.3; AUC: 0.947
SGB (uncompl vs compl AAp)Accuracy: 78.9; sensitivity: 83.3; specificity: 76.9; F1 score: 71.4; AUC: 0.790
5Kucukakcali et al[87]2025TurkeyCompl AAp: 183; uncompl AAp: 290; negative AAp: 117Demographic and biochemical dataAdaBoost, XGBoost, SGB, bagged CART, RF (XGBoost best results)Accuracy: 80.0; sensitivity: 70.8; specificity: 85.4; F1 score: 72.3
AdaBoost, XGBoost, SGB, bagged CART, RF (XGBoost best results)Accuracy: 90.7; sensitivity: 100; specificity: 61.5; F1 score: 94.3
6Kim et al[29]2025South KoreaCompl AAp: 655; uncompl AAp: 2789; negative AAp: 551; non-AAp: 3058CT images (non vs uncomplicated)3D-CNN (transfer learning, ResNet/DenseNet/EfficientNet) (DenseNet best results)Accuracy: 79.5; sensitivity: 70.1; specificity: 87.6; AUC: 0.865
CT images (complicated vs uncomplicated)3D-CNN (transfer learning, ResNet/DenseNet/EfficientNet) (DenseNet best results)Accuracy: 76.1; sensitivity: 82.6; specificity: 74.2; AUC: 0.827
7Kendall et al[88]2025Compl AAp: 1192; uncompl AAp: 344; non-AAp: 317Demographic, clinical, biochemical and radiological dataRF, LightGBM, LR, SGD, KNN, Dummy, GANDALF, RF + embedded LightGBM (best result)Accuracy: 98.1; sensitivity: 97.8; specificity: 96.1; AUROC: 0.993
RF, LightGBM, LR, SGD, KNN, Dummy, GANDALF, LightGBM + filter FS (best result)Accuracy: 90.1; sensitivity: 78.8; specificity: 95.1; AUROC: 0.931
8Erman et al[35]2025CanadaCompl AAp: 602; uncompl AAp: 1378Demographic, clinical and biochemical dataML pipelineAccuracy: 70.1; NPV: 82.8; PPV: 56.4
9Chen et al[3]2025ChinaCompl AAp: 357; uncompl AAp: 416Demographic, clinical and biochemical dataXGBoost, RF, DT (CART), SVM (XGBoost best results)Accuracy: 85.5; sensitivity: 86.5; specificity: 84.6; AUC: 0.914
10Aydin et al[89]2025TurkeyCompl AAp: 296; uncompl AAp: 3658; non-AAp: 4632; validation: Compl AAp: 1580; Uncompl AAp: 1287; Non-AAp: 169Demographic, clinical, biochemical and radiological dataLR, KNN, SVM, CART, RF (RF best results for AAp diagnosis)Accuracy: 99.2; sensitivity: 99.8; specificity: 99.3; AUC: 0.996
LR, KNN, SVM, CART, RF (RF best results for severity of AAp)Accuracy: 99.2; sensitivity: 99.3; specificity: 99.1; AUC: 0.995
11Zhao et al[90]2024ChinaCompl AAp: 258; uncompl AAp: 76Demographic, clinical, biochemical and radiological data (CT images)Radiomics model (CT images), CT model (clinical and CT features), combined modelAccuracy: 75.4; sensitivity: 74.6; specificity: 82.6; AUC: 0.817
12Yazici et al[37]2024TurkeyCompl AAp: 142; uncompl AAp: 990Demographic, clinical and biochemical dataKNN, DT, LR, SVM, MLP, GNB (LR best result)Accuracy: 96.0; sensitivity: 60.0; specificity: 100
13Wei et al[40]2024ChinaCompl AAp: 103; uncompl AAp: 219Demographic, clinical and biochemical dataLR, CART, FR, SVM, Bayes, KNN, NN, FDA, GBM (GBM best result)Accuracy: 95.6; sensitivity: 91.7; specificity: 97.4; F1 score: 93.0
14Schipper et al[33]2024NetherlandsAAp: 167; non-AAp: 169Data including physical examinationXGBoostAUC: 0.919
Data including physical examination and biochemical dataXGBoostAUC: 0.923
15Roshanaei et al[36]2024IranAAp: 138; non-AAp: 396Demographic, clinical and biochemical dataGNBAccuracy: 95.0; sensitivity: 87.2; specificity: 97.5; F1 score: 89.0
16Marcinkevičs et al[52]2024GermanyCompl AAp: 97; uncompl AAp: 482Radiological data (US images) (diagnosis)CBM; MVCBM; SSMVCBMAUROC: 0.800; AUPR: 0.920
Radiological data (US images) (severity)CBM; MVCBM; SSMVCBMAUROC: 0.780; AUPR: 0.580
17Males et al[39]2024CroatiaCompl AAp: 252; uncompl AAp: 252; negative AAp: 47 (pediatric cases)Demographic, clinical and biochemical dataRFSensitivity: 99.7; specificity: 17.0
XGBoostSensitivity: 99.8; specificity: 12.0
LRSensitivity: 99.7; specificity: 5.2
18Liang et al[91]2024ChinaTraining cohort: Compl AAp: 236; uncompl AAp: 464; validation cohort: Compl AAp: 182; uncompl AAp: 283Demographic, clinical, biochemical and radiological dataConventional combined model (clinical + CT features); deep learning radiomics (DL + radiomics) our combined model (clinical + CT + DL + radiomics) radiologist’s diagnosisAccuracy: 79.0; sensitivity: 66.5; specificity: 85.3; AUC: 0.816
Accuracy: 72.5; sensitivity: 70.2; specificity: 73.9; AUC: 0.799
19Gollapalli et al[38]2024Saudi Arabia411 patients3Demographic, clinical and biochemical dataDT (experiment 1)Accuracy: 75.0; sensitivity: 13.8; precision: 40.0; F1 score: 20.5
KNN (experiment 1)Accuracy: 83.1; sensitivity: 41.4; precision: 75.0; F1 score: 53.3
DT (experiment 2)Accuracy: 87.4; sensitivity: 91.2; precision: 83.8; F1 score: 87.4
KNN (experiment 2)Accuracy: 84.7; sensitivity: 84.6; precision: 83.7; F1 score: 84.2
KNN bagging (experiment 3)Accuracy: 92.1; sensitivity: 91.2; precision: 92.2; F1 score: 91.7
DT bagging (experiment 3)Accuracy: 89.5; sensitivity: 83.5; precision: 93.8; F1 score: 88.4
Stacking (experiment 4)Accuracy: 92.6; sensitivity: 89.0; precision: 95.3; F1 score: 92.0
20Chadaga et al[42]2024IndiaAAp: 465; non-AAp: 317 (pediatric cases)Demographic, clinical and biochemical dataRF, LR, DT, KNN, AdaBoost, CatBoost, LightGBM, XGBoost, APPSTACK. Bayesian optimization, hybrid bat algorithm, hybrid self-adaptive bat algorithm, firefly algorithm, grid search, randomized search (hybrid bat algorithm with APPSTACK best results)Accuracy: 94.0; sensitivity: 74.0; precision: 85.0; F1 score: 78.0; AUC: 0.960
21Abu-Ashour et al[41]2024CanadaAAp: 2100 (pediatric cases)Ultrasound reportsHumanPrecision: 57.3; sensitivity: 88.1; F score: 69.4
ChatGPT (large language model)Precision: 92.3; sensitivity: 68.4; F score: 78.5
Operative reportsHumanPrecision: 59.2; sensitivity: 95.3; F score: 73.1
ChatGPT (large language model)Precision: 97.1; sensitivity: 75.8; F score: 85.1
22Phan-Mai et al[46]2023VietnamCompl AAp: 483; uncompl AAp: 1467Demographic, clinical and biochemical dataSVM (SMOTE-adjusted)Accuracy: 65.5; AUC: 0.730
DT (SMOTE-adjusted)Accuracy: 73.8; AUC: 0.738
KNN (SMOTE-adjusted)Accuracy: 74.1; AUC: 0.831
LR (SMOTE-adjusted)Accuracy: 72.9; AUC: 0.789
ANN (SMOTE-adjusted)Accuracy: 74.2; AUC: 0.810
GBM (SMOTE-adjusted)Accuracy: 82.0; AUC: 0.890
23Pati et al[30]2023IndiaCompl AAp: 514; uncompl AAp: 196; non-AAp: 183 (pediatric cases)Demographic, clinical, biochemical and radiological dataLR, NB, KNN, SVM, DT, RF, MLP, AdaBoost (RF best for diagnostic)Accuracy: 91.6; precision: 89.0; sensitivity: 92.0; specificity: 91.3; F1 score: 90.4
LR, NB, KNN, SVM, DT, RF, MLP, AdaBoost (AdaBoost best for complication prediction)Accuracy: 92.2; precision: 94.6; sensitivity: 96.3; specificity: 68.6; F1 score: 95.4
24Park et al[45]2023South KoreaAAp: 246; non-AAp: 215; diverticulitis: 254CT imagesCNN-EfficientNet algorithm (single image method)Accuracy: 86.1; precision: 85.4; sensitivity: 85.6; specificity: 86.5; AUC: 0.937
CT imagesCNN-EfficientNet algorithm (RGB method)Accuracy: 87.9; precision: 87.1; sensitivity: 87.9; specificity: 88.1; AUC: 0.951
25Lin et al[93]2023TaiwanCompl AAp: 49; uncompl AAp: 362Demographic, clinical, biochemical and radiological data9 different MLP-ANN analyzed (Lin et al[93] ANN model best results)AUC: 0.897; sensitivity: 85.7; specificity: 91.7
26Li et al[92]2023ChinaCompl AAp: 141; uncompl AAp: 201 (pregnant patients)Demographic, clinical, biochemical and radiological dataDTAUC: 0.780
27Harmantepe et al[44]2023TurkeyAAp: 189; negative AAp: 156Demographic and biochemical dataLR, SVM, NN, KNN, voting classifier (voting best result)Accuracy: 86.2; sensitivity: 83.7; specificity: 88.6
28Akbulut et al[43]2023TurkeyCompl AAp: 304; uncompl AAp: 1161; negative AAp: 332Demographic and biochemical dataCatBoost + SHAP (non-AAp vs AAp)Accuracy: 88.2; sensitivity: 84.2; specificity: 93.2; F1 score: 88.7; AUC: 0.947
CatBoost + SHAP (compl vs uncompl AAp)Accuracy: 92.0; sensitivity: 94.1; specificity: 90.5; F1 score: 91.1; AUC: 0.969
29Xia et al[51]2022ChinaCompl AAp: 148; uncompl AAp: 150Demographic and clinical dataSVMAccuracy: 83.6; sensitivity: 81.7; specificity: 85.3; Matthews: 0.6732
30Su et al[49]2022United StatesAAp: 28002; non-AAp: 655 (adult cases)Demographic and clinical dataLRAccuracy: 96.0; sensitivity: 73.0; specificity: 68.0; AUC: 0.780
RFAccuracy: 97.0; sensitivity: 67.0; specificity: 71.0; AUC: 0.750
AAp: 11128; non-AAp: 256 (pediatric cases)Demographic and clinical dataLRAccuracy: 95.0; sensitivity: 81.0; specificity: 78.0; AUC: 0.870
RFAccuracy: 96.0; sensitivity: 82.0; specificity: 75.0; AUC: 0.860
31Shikha and Kasem[48]2023BruneiCompl AAp: 25; uncompl AAp: 24; negative AAp: 97 (pediatric cases)Demographic, Clinical, and biochemical dataAI pediatric appendicitis DTAccuracy: 97.1; sensitivity: 96.7; specificity: 97.4
32Mijwil and Aggarwal[47]2022IraqAppendectomy: 3185; medical: 307Demographic, and biochemical dataRF, LR, NB, GLM, DT, SVM, GBT (RF best results)Accuracy: 83.8; precision: 84.1; sensitivity: 81.1; specificity: 81.0
33Akgül et al[50]2021TurkeyCompl AAp: 45; uncompl AAp: 147; negative AAp: 24; non-AAp: 106 (pediatric cases)Demographic, clinical, biochemical and radiological dataANNSensitivity: 89.8; specificity: 81.2; AUC: 0.910
34Marcinkevics et al[53]2021GermanyCompl AAp: 51; uncompl AAp: 196; non-AAp: 183 (pediatric cases)Demographic, clinical, biochemical and radiological dataLR (diagnostic)Sensitivity: 88.0; specificity: 76.0; AUC: 0.910
RF (diagnostic)Sensitivity: 91.0; specificity: 86.0; AUC: 0.960
GBM (diagnostic)Sensitivity: 93.0; specificity: 86.0; AUC: 0.960
LR (severity)Sensitivity: 93.0; specificity: 42.0; AUC: 0.820
RF (severity)Sensitivity: 98.0; specificity: 45.0; AUC: 0.900
GBM (severity)Sensitivity: 97.0; specificity: 46.0; AUC: 0.900
35Aparicio et al[79]2021SwitzerlandAAp: 430 (pediatric cases)Demographic, clinical, and biochemical dataSLIM risk modelAUC: 0.850; AUPR: 0.900
36Hayashi et al[55]2021JapanAAp: 70 videos (pediatric cases)70 videos (between 85-347 images per video)U-net-based CNNNot indicated
37Reismann et al[56]2021GermanyAAp: 29Gene expression data (56.666 gene)LR-based biomarker signature (4 genes)AUC: 0.84
38Ghareeb et al[54]2021Egypt319Clinical findings. Chronic diseases. Patient characteristics. Laboratory and imagingEnsemble model (subspace KNN)AUC: 0.82; accuracy: 91.1
39Stiel et al[57]2020GermanyCompl AAp: 102; uncompl AAp: 234; negative AAp: 12; non-AAp: 115 (pediatric cases)Demographic, clinical, biochemical and radiological dataModified HAS based CART, AI score based RF (AAp vs nonoperative)Sensitivity: 86.6; specificity: 70.9; AUC: 0.920
Modified HAS based CART, AI score based RF (uncompl vs compl AAp)Sensitivity: 97.1; specificity: 17.9; AUC: 0.710
40Akmese et al[58]2020TurkeyAAp: 214; non-AAp: 214Demographic and biochemical dataRF, CART, SVM, LR, KNN, ANN, GB (GB best results)Accuracy: 95.3; sensitivity: 93.2; specificity: 97.1
41Aydin et al[59]2020TurkeyControl: 4244; negative AAp: 169; compl AAp: 1559; uncompl AAp: 1272 (pediatric cases)Demographic and biochemical dataKNN, NB, DT, SVM, GLM, RF (RF best results)Accuracy: 97.5; sensitivity: 97.8; specificity: 97.2; AUC: 0.997
42Rajpurkar et al[60]2020United StatesAAp: 359; non-AAp: 287CT imagesAverage of 2D Res-Net18, average of 2D Res-Net34, LRCN Res-Net18, LRCN Res-Net34, SE-ResNeXt-50, AppendiXNet (3D-ResNet CNN)Accuracy: 72.5; sensitivity: 78.4; specificity: 66.7; AUC: 0.810
43Park et al[61]2020United StatesAAp: 215; non-AAp: 452CT images3D-CNN + grad-CAMAccuracy: 91.5; sensitivity: 90.2; specificity: 92.0
44Zhao et al[63]2020ChinaAAp: 48; non-AAp: 86Midstream urine samplesUrinary proteomics + RF, SVM, NB (RF best results)Accuracy: 83.6; sensitivity: 81.2; specificity: 84.4
45Ramirez-garcialuna et al[62]2020MexicoAAp: 51; non-AAp: 17; negative AAp: 3; control: 51Demographic, clinical biochemical, radiological and infrared thermal dataInfrared thermography + RF classifierAccuracy: 92.3; sensitivity: 90.0; specificity: 96.1; AUC: 0.906
46Reismann et al[65]2019GermanyCompl AAp: 183; uncompl AAp: 290; negative AAp: 117 (pediatric cases)Signature appendiceal diameter CRP leukocytes neutrophilsCRP, leukocytes, neutrophils, linear model (LBFGS) (AAp vs non-AAp)Accuracy: 90.0; sensitivity: 93.0; specificity: 67.0; AUC: 0.910
CRP, leukocytes, neutrophils, linear model (LBFGS) (compl vs uncompl AAp)Accuracy: 51.0; sensitivity: 95.0; specificity: 33.0; AUC: 0.800
47Kang et al[64]2019South KoreaAAp: 80; non-AAp: 164Demographic, clinical biochemical and radiological dataAlvarado, AAS, Eskelinen, DT based CHAID algorithmAUC: 0.850
48Gudelis et al[66]2019SpainAAp: 93; non-AAp: 159Demographic, clinical biochemical and radiological dataANNAUC: 0.950; PCC: 93.5
CHAIDAUC: 0.930; PCC: 81.7
49Shahmoradi et al[67]2018IranAAp: 133; negative AAp: 48Demographic, clinical and biochemical dataMLPAccuracy: 92.9; sensitivity: 80.0; specificity: 97.5; AUC: 0.832
RBFNAccuracy: 77.6; sensitivity: 28.0; specificity: 87.8
LRAccuracy: 83.9; sensitivity: 58.3; specificity: 93.2; AUC: 0.808
50Jamshidnezhad et al[69]2017IranNADemographic, clinical biochemical and radiological dataACSS, MLNN, SVM, NN, hybrid fuzzy model, evolutionary–fuzzy + HBRCAccuracy: 89.9
51Afshari Safavi et al[68]2015IranCompl AAp: 24; uncompl: 59; negative AAp: 17Demographic, and biochemical dataANN (MLP)Accuracy: 88.0; sensitivity: 97.6; AUC: 0.875
52Park and Kim[70]2015South KoreaCompl AAp: 62; uncompl AAp: 143; non-AAp: 596Demographic, clinical and radiological dataMLNNAccuracy: 97.8; sensitivity: 96.6; specificity: 99.5
RBFAUC: 99.8; sensitivity: 99.7; specificity: 100
PNNAUC: 99.4; sensitivity: 98.1; specificity: 100
53Lee et al[75]2013TaiwanAAp: 464; negative-AAp: 110Demographic, clinical and biochemical dataPEL, SVM, SMOTE, MCC, CM, WCUS, Alvarado (PEL best results)Sensitivity: 57.3; specificity: 66.7; AUC: 0.619
54Iliou et al[94]2013GreeceAAp: 71 Non-AAp: 236 (pediatric cases)Demographic, clinical and biochemical dataK1, JRip, bagging ensemble (majority voting)Accuracy: 87.8
55Deleger et al[95]2013United StatesAAp: 534; control: 1566Components of the pediatric appendicitis scoreNLPSensitivity: 86.9; precision: 86.8; specificity: 93.8
56Yoldaş et al[71]2012TurkeyAAp: 132; negative-AAp: 24Demographic, clinical and biochemical dataANNSensitivity: 100; specificity: 97.2; AUC: 0.950
57Son et al[76]2012South KoreaAAp: 152; non-AAp: 174Demographic, clinical and biochemical dataDT C5.0 model (univariate)Accuracy: 80.2; sensitivity: 82.4; specificity: 78.3; AUC: 0.803
DT C5.0 model (multivariate)Accuracy: 73.5; sensitivity: 66.0; specificity: 80.0; AUC: 0.730
58Malley et al[96]2012United StatesAAp: 85; negative AAp: 21Biochemical datab-NN, class RF, Iboost, LR, KNN, regRF (regRF best results)Brier score: 0.061; AUC: 0.976
59Grigull and Lechner[74]2012GermanyAAp: 45 (pediatric cases)Demographic, clinical and biochemical dataSVM, ANN, fuzzy logic, voting algorithm (combination best results)Accuracy: 97.4
60Hsieh et al[72]2011TaiwanCompl AAp: 28; uncompl AAp: 87; negative AAp: 11; non-AAp: 65Demographic, clinical and biochemical dataRF, SVM, ANN, LR (RF best results)Accuracy: 96.0; sensitivity: 94.0; specificity: 100; AUC: 0.980
61Ting et al[77]2010TaiwanCompl AAp: 80; uncompl: 340; negative-AAp: 112Demographic, clinical and biochemical dataDTSensitivity: 94.5; specificity: 80.5
62Prabhudesai et al[73]2008United KingdomAAp: 24; non-AAp: 36Demographic, clinical and biochemical dataAlvarado (≥ 7), Alvarado (≥ 6), clinical, ANN (ANN best results)Sensitivity: 100; specificity: 97.2; PPV: 96.0; NPV: 100
63Sakai et al[78]2007JapanAAp: 86; negative AAp: 12; non-AAp: 71Demographic, clinical and biochemical dataLRSensitivity: 21.4; specificity: 80.4; AUC: 0.719
ANNSensitivity: 19.9; specificity: 78.5; AUC: 0.741
64Pesonen et al[98]1996FinlandSuspected AAp: 911Demographic, clinical and biochemical dataNN (ART1)Sensitivity: 79.0; specificity: 78.0
NN (SOM)Sensitivity: 55.0; specificity: 83.0
NN (LVQ)Sensitivity: 87.0; specificity: 90.0
NN (BP)Sensitivity: 83.0; specificity: 92.0
65Forsström et al[97]1995FinlandAAp: 145; negative AAp: 41Biochemical dataLRAUC: 0.678
DiagaiDAUC: 0.683
NN (BP)AUC: 0.622
Table 2 Definitions of artificial intelligence techniques employed in acute appendicitis research
Method
Definition
Relation to deep learning
Advantages
Deep learningA subset of ML that uses multi-layered neural networks to automatically extract features from large datasetsDL is commonly used in image analysis text processing and predictive modeling. FL and edge AI can enhance the efficiency and privacy of DL modelsHigh ACC strong capability in handling image and language data
Federated learningA decentralized ML approach where models are trained across multiple institutions without sharing patient dataFL allows DL models to be trained across different centers while preserving patient privacy. It is useful for multi-center AI studies in appendicitis diagnosisEnhances data privacy allows for cross-institutional AI model development
Edge AIAI models that run directly on local hospital devices portable ultrasound scanners or mobile systems instead of relying on cloud computingEdge AI enables DL models to operate in real-time on local devices reducing dependence on internet connectivityReal-time processing improved data security reduced latency in decision-making
Bayesian networksProbabilistic models that establish relationships between variables and handle uncertainty in dataCan be integrated with DL models to improve decision-making under incomplete informationUseful for risk prediction particularly in cases with missing clinical data
Transformer-based AI models (BERT, GPT)Large language models capable of understanding and processing medical textCan be used in combination with DL for automated triage systems and clinical note analysisEfficient text processing potential for real-time clinical decision support
Graph neural networksAI models that analyze relationships between data points in a structured graph formatGNNs can enhance DL models by incorporating complex patient relationships and comorbiditiesImproves risk prediction models enhances interpretability of patient data interactions
Automated machine learningAI systems that automatically optimize model selection hyperparameters and feature engineeringAutoML can generate optimized DL models without requiring manual tuningReduces the need for expert AI developers accelerates model deployment
Natural language processingAI systems designed to interpret and extract information from human language including clinical notes and radiology reportsNLP models can be integrated with DL to analyze unstructured medical dataEnhances electronic health record analysis supports AI-assisted triage systems
Computer visionAI field enabling machines to interpret visual data particularly useful in medical imagingComputer vision models. including DL-based CNNs improve diagnostic ACC in radiologyReduces diagnostic variability. increases ACC in CT and MRI interpretation
Reinforcement learning and explainable AIAI models that learn optimal decision pathways based on cumulative rewards XAI ensures transparency in model predictionsCan optimize treatment strategies while SHAP and LIME techniques make AI models interpretable for cliniciansImproves AI adoption in healthcare enables better treatment planning
Machine learningA broad AI field encompassing various algorithms including supervised and unsupervised learningML models, such as SVM, random forest and XGBoost form the foundation for AI in clinical decision-makingProvides adaptable and scalable models for medical data analysis
Vision transformersA deep learning model specifically designed for image segmentation and classificationEnhances medical image analysis by capturing spatial relationships within radiology imagesImproves segmentation ACC particularly in CT and MRI-based diagnosis
Lazy learning algorithms (KNN)Classification method that identifies the closest data points in a datasetUsed in ML for patient clustering and classificationSimple yet effective but computationally expensive in large datasets
Extra trees classifierA variant of random forest that introduces additional randomness to improve ACCWorks alongside ensemble learning to enhance classification performanceHigh ACC robustness in medical data analysis
Hybrid AI modelsAI models combining ML and DL techniques to improve diagnostic performanceUsed in multimodal AI-based appendicitis detectionEnhances ACC by integrating structured and unstructured data sources