Copyright
©The Author(s) 2025.
World J Gastroenterol. Oct 21, 2025; 31(39): 111495
Published online Oct 21, 2025. doi: 10.3748/wjg.v31.i39.111495
Published online Oct 21, 2025. doi: 10.3748/wjg.v31.i39.111495
Table 1 Use of artificial intelligence in the identification of patients with esophageal neoplastic or preneoplastic lesions
Lesions | Diagnostic or predictive modality | AI classifier | AI validation methods | Number of images, slides or videos in training dataset | Number of images, slides or videos in test dataset | Best average results (%) | Ref. | |
Accuracy | Sensitivity/specificity | |||||||
NDBE, LGD, HGD | Histology | Deep learning | Training, validation, and test sets created (by a random 70/20/10 split) from 542 patients (164 NDBE, 226 LGD, and 152 HGD) | 8596 bounding boxes | 840 boxes | F1 score; NDBE: 0.91; LGD: 0.90; HGD: 1.0 | NDBE: > 90; LGD: 81.3/100; HGD: > 90 | Faghani et al[18] |
ESCC and EAC | Upper GI endoscopy (WL or NBI) | CNN | 8428 from 384 patients (397 ESCC, 32 EAC) | 1118 (956/162) from 50 control, 41 ESCC, 8 EAC | 55.7 | 98.0/16.0 | Horie et al[19] | |
EN-BE | Upper GI endoscopy | Deep learning CAD system | 494364 Labeled endoscopic images collected from all intestinal segments | 1704 unique esophageal high-resolution images of rigorously confirmed EN-BE and NDBE, derived from 669 patients | 89.0 | 88.0/90.0 | de Groof et al[20] | |
EN-BE | Upper GI endoscopy | CNN-CAD | Phase 2 image-based validation; phase 3 video-based external validation | 75198 images and videos (96 patients) of neoplastic and 1014973 images and videos (65 patients) of nonneoplastic BE | Phase 2 107 images (20 patients) of neoplastic and 364 images (14 patients) of nonneoplastic BE; phase 3 32 videos (32 patients) of neoplastic and 43 videos (43 patients) of nonneoplastic BE | Phase 2: 94.7 | 95.3/94.5 | Abdelrahim et al[23] |
Phase 3: 92.0 | 93.8/90.7 |
Table 2 Use of artificial intelligence in the identification of patients with early gastric cancer
Lesions | Diagnostic or predictive modality | AI classifier | Number of images in training dataset | Number of images in test dataset | Best average results (%) | Ref. | |
Accuracy | Sensitivity/specificity | ||||||
EGC | Upper GI endoscopy (WL, CE, NBI) | CNN | 13584 from 2639 lesions | 2296 from 77 lesions | NA | 92.2/NA | Hirasawa et al[27] |
EGC | Upper GI endoscopy | CNN-CAD system | 790 images | 203 images | 89.16 | 76.47/95.56 | Zhu et al[28] |
EGC | Histology | CNN | 2123 whole slide images | 3212 whole slide images | 100/80.6 | Song et al[29] |
- Citation: Shrestha UK. Emerging role of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2025; 31(39): 111495
- URL: https://www.wjgnet.com/1007-9327/full/v31/i39/111495.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i39.111495