BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2025.
World J Gastroenterol. Oct 21, 2025; 31(39): 111495
Published online Oct 21, 2025. doi: 10.3748/wjg.v31.i39.111495
Table 1 Use of artificial intelligence in the identification of patients with esophageal neoplastic or preneoplastic lesions
LesionsDiagnostic or predictive modalityAI classifierAI validation methodsNumber of images, slides or videos in training datasetNumber of images, slides or videos in test datasetBest average results (%)
Ref.
Accuracy
Sensitivity/specificity
NDBE, LGD, HGDHistologyDeep learningTraining, validation, and test sets created (by a random 70/20/10 split) from 542 patients (164 NDBE, 226 LGD, and 152 HGD)8596 bounding boxes840 boxesF1 score; NDBE: 0.91; LGD: 0.90; HGD: 1.0NDBE: > 90; LGD: 81.3/100; HGD: > 90Faghani et al[18]
ESCC and EACUpper GI endoscopy (WL or NBI)CNN8428 from 384 patients (397 ESCC, 32 EAC)1118 (956/162) from 50 control, 41 ESCC, 8 EAC55.798.0/16.0Horie et al[19]
EN-BEUpper GI endoscopyDeep learning CAD system494364 Labeled endoscopic images collected from all intestinal segments1704 unique esophageal high-resolution images of rigorously confirmed EN-BE and NDBE, derived from 669 patients89.088.0/90.0de Groof et al[20]
EN-BEUpper GI endoscopyCNN-CADPhase 2 image-based validation; phase 3 video-based external validation75198 images and videos (96 patients) of neoplastic and 1014973 images and videos (65 patients) of nonneoplastic BEPhase 2 107 images (20 patients) of neoplastic and 364 images (14 patients) of nonneoplastic BE; phase 3 32 videos (32 patients) of neoplastic and 43 videos (43 patients) of nonneoplastic BEPhase 2: 94.795.3/94.5Abdelrahim et al[23]
Phase 3: 92.093.8/90.7
Table 2 Use of artificial intelligence in the identification of patients with early gastric cancer
LesionsDiagnostic or predictive modalityAI classifierNumber of images in training datasetNumber of images in test datasetBest average results (%)
Ref.
Accuracy
Sensitivity/specificity
EGCUpper GI endoscopy (WL, CE, NBI)CNN13584 from 2639 lesions2296 from 77 lesionsNA92.2/NAHirasawa et al[27]
EGCUpper GI endoscopyCNN-CAD system790 images203 images89.1676.47/95.56Zhu et al[28]
EGCHistologyCNN2123 whole slide images3212 whole slide images100/80.6Song et al[29]