Systematic Reviews
Copyright ©The Author(s) 2025.
World J Gastroenterol. Jun 21, 2025; 31(23): 106836
Published online Jun 21, 2025. doi: 10.3748/wjg.v31.i23.106836
Table 1 Characteristics of the included studies
Ref.
Journal
Country
Sample size
Sex (male:female)
IBS
Control
Biomarker
AI used
Specificity
Sensitivity
Accuracy
AUC
Shepherd et al[17], 2014J Breath ResUnited Kingdom803446Gas chromatographyArtificial neural network analyses0.54
Aggio et al[18], 2017Aliment Pharmacol TherUnited Kingdom6926:432841Gas chromatographyML (SVM)0.91
Mao et al[19], 2020Hum Brain MappChina6834:343434Neuroimaging, HFML (SVM)HF: 0.671, 0.806, 0.529; all: 0.750HF: 0.626, 0.438, 0.668; all: 0.679HF: 0.649, 0.619, 0.599; all: 0.715HF: 0.708, 0.659, 0.61; all: 0.776
Fukui et al[8], 2020J Clin MedJapan11146:658526Gut microbiomeML (random forest model)> 0.90> 0.800.846
Su et al[9], 2022Nat CommunChina1038145893Gut microbiomeML (random forests, k-nearest neighbors, SVM multi-layer perceptron and SVM)0.980.940.980.99
Tanaka et al[20], 2023Front MicrobiolJapan7070:03535Protease activity, C-terminal residue of K, R, S, or G, all probes, microbiome, and metabolomeML (random forest model)Protease activity: 0.727, and all probes: 0.909Protease activity: 0.81, and all probes: 0.905Protease activity: 0.83, all probes: 0.92, microbiome: 0.58, metabolome: 0.67
Table 2 Quality assessment of the included studies
Ref.
Diagnostic accuracy
Machine learning
Patient selection1
Index test1
Reference standard1
Flow & timing1
Predictors2
Outcomes2
Analysis2
Data processing3
Model specification3
Training/validation3
Performance metrics3
Transparency3
Shepherd et al[17]0 (clinic-based sample)1 (ANN model)1 (Rome II)0 (no external validation)1 (ANN)1 (Rome II)1 (cross-validation used)1 (time binning and normalization)1 (ANN model with hidden layers)1 (4-fold cross-validation)1 (sensitivity, specificity calculated)0 (limited code transparency)
Aggio et al[18]1 (diverse control)1 (SVM and PLS pipeline)1 (CRP and WCC levels)1 (partial external validation)1 (SVM)1 (definition)1 (multiple CV methods for robustness)1 (normalized gas values)1 (SVM with PLS setup)1 (Monte Carlo and 10-fold cross-validation)1 (ROC, sensitivity)0 (no full code access)
Mao et al[19]0 (specific IBS subtypes)1 (multi-class SVM based on ROIs)1 (Rome IV)0 (no external validation)1 (SVM)1 (Rome IV)0 (limited test sets)1 (SPM preprocessing for ROIs)1 (SVM for IBS classification)1 (10-fold cross-validation)1 (AUC, sensitivity, specificity)0 (limited data sharing)
Fukui et al[8]1 (multicenter approach)1 (RF and KNN models)1 (Rome IV and histological standards)0 (no external validation)1 (adjusted predictors)1 (Rome IV and histological standards)0 (no external testing)1 (batch effect adjustment)1 (RF and KNN classifiers)1 (nested CV)1 (AUC and AUPR)1 (full settings provided, partial sharing)
Su et al[9]1 (matched control)1 (RF model)1 (standard enzyme-linked diagnosis)1 (robust cross-validation)1 (enzyme activity focus)1 (enzyme-based diagnosis)1 (5-fold cross-validation)1 (normalization for enzyme analysis)1 (RF model with grid search)1 (5-fold cross-validation)1 (comprehensive ROC analysis)1 (standard software in R)
Tanaka et al[20]1 (broad sample selection)1 (RF validated with Bray-Curtis)1 (Rome IV and microbial standards)1 (rigorous cross-validation1 (RF)1 (Rome IV for microbial analysis)1 (external validation)1 (Bray-Curtis dissimilarity for microbiome)1 (RF validated externally)1 (nested CV with external testing)1 (AUROC and AUPR)1 (code and dataset on GitHub)