Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastroenterol. Jan 14, 2024; 30(2): 170-183
Published online Jan 14, 2024. doi: 10.3748/wjg.v30.i2.170
Table 1 Training and test sets image classification and the number of each classification
Set
Type of CE
Type of pictures
N
P0Lk
P0Lz
P0X
P1E
P1U
P1P
P2U
P2P
P2V
B
I
Total
Training setPillCam140262086150555118513867687156468993015291793547220
MiroCam1345261281749410912062180341205421782689727354
Test setPillCam9221245435122235126111926081091391703844624643
MiroCam45181124181536841568158168921181397012644
Table 2 Comparison of sensitivity, specificity, and accuracy of physician and model-assisted reading for different types of image recognition
Type of CE
Mode of reading
Sensitivity, %
Specificity, %
Accuracy, %
IP95.9698.1097.39
M99.8599.5799.66
NP94.9694.2594.52
M98.8499.7799.43
P0LkP84.3199.8999.75
M96.9299.9799.94
P0LzP78.6699.7199.23
M97.3099.9099.83
P0XP65.4599.8799.62
M93.8299.9899.94
P1EP67.3399.5599.28
M91.7599.9699.90
P1UP74.8899.6898.57
M98.3999.9499.87
P1PP64.7199.7899.61
M94.1299.9499.91
P2UP98.3599.9499.76
M99.6999.9999.95
P2PP88.1499.7199.65
M10099.9699.96
P2VP52.3899.9299.62
M97.4099.9799.96
BP100100100
M100100100
Table 3 Effect of stage 1 multimodal module ablation experiments on the performance metrics of the algorithm
MethodColor channel module
Accuracy, %Sensitivity, %Specificity, %
R
G
B
RGB
Method 1×××98.3298.2998.36
Method 2×××96.9796.9996.93
Method 3×××99.0499.0299.08
Method 4×××99.0899.0599.12
Table 4 Effect of stage 1 attention module ablation experiments on the performance metrics of the algorithm
Method
Attention module
Accuracy, %
Sensitivity, %
Specificity, %
SA
CA
MHSA
Method 1××98.7998.7598.86
Method 2××98.8298.6699.06
Method 3××99.0899.0599.12
Table 5 Effect of ablation experiments in stage 2 on algorithm performance metrics
Module
Accuracy, %
EER, %
AUC, %
PN, √98.960.2498.86
PN, ×96.380.2995.02
ASPP, √98.960.2498.86
ASPP, ×96.010.2896.47
MHSA, √98.960.2498.86
MHSA, ×96.220.2995.68
Table 6 Effect of random number experiment on algorithm performance index in stage 2 feature erase module
Random number
Accuracy, %
EER, %
AUC, %
00197.910.2998.49
01097.920.2898.47
10097.910.2998.50
01198.580.2498.63
10198.370.2598.66
11098.270.2598.67
11198.960.2498.86
Table 7 Comparison of available models
Ref.
Year of publication
Application
Algorithm
Sensitivity, %
Specificity, %
Accuracy, %
Aoki et al[29]2019Erosion/ulcerCNN system based on SSD88.290.990.8
Ding et al[22]2019UlcerResNet-15299.799.999.8
Bleeding99.599.999.9
Vascular lesion98.999.999.2

Aoki et al[30]

2020
Protruding lesionResNet-5010099.999.9
Bleeding96.699.999.9
Current study2023Ulcer( P1U + P2U )Improved ResNet-50 + YOLO-V599.799.999.9
Vascular lesion97.499.999.9
Protruding lesion (P1P + P2P)98.199.999.9
Bleeding100100100