Copyright
©The Author(s) 2021.
World J Gastroenterol. Jun 28, 2021; 27(24): 3543-3555
Published online Jun 28, 2021. doi: 10.3748/wjg.v27.i24.3543
Published online Jun 28, 2021. doi: 10.3748/wjg.v27.i24.3543
Ref. | Purpose | AI type | Endoscopy type | Subjects | Outcomes |
Detection of gastric neoplasms | |||||
Hirasawa et al[21], 2018 | Detect EGC | CNN (SSD) | Conventional endoscopy | Training: 13584 images; Test: 2296 images from 69 patients. | Sensitivity 92.2%, PPV 30.6% |
Ishioka et al[22], 2019 | Real time detection of EGC | CNN (SSD) | Conventional endoscopy | Live video of 62 patients | Accuracy 94.1%, median time 1 s (range: 0-44 s) |
Sakai et al[23], 2018 | Detect EGC | CNN | Conventional endoscopy | Training: 348943 images; Test: 9650 images | Accuracy 82.8% |
Kanesaka et al[24], 2018 | Detect EGC | SVM | M-NBI | Training: 126 images; Test: 81 images | Accuracy 96.3%, sensitivity 96.7%, specificity 95% |
Li et al[25], 2020 | Detect EGC | CNN (Inception-v3) | M-NBI | Training: 2088 images; Test: 341 images | Accuracy 91.2%, sensitivity 90.6%, specificity 90.9% |
Horiuchi et al[26], 2020 | Classifying EGC from gastritis | CNN (GoogLeNet) | M-NBI | Training: 2570 images; Test: 258 images. | Accuracy 85.3%, sensitivity 95.4%, specificity 71.0%, test speed 51.83 images/s (0.02 s/image) |
Horiuchi et al[27], 2020 | Detect EGC | CNN (GoogLeNet) | M-NBI | 174 videos | Accuracy 85.1%, AUC 0.8684, sensitivity 87.4%, specificity 82.8%, PPV 83.5%, NPV 86.7% |
Luo et al[28], 2019 | Real time detection of EGC | GRAIDS | Conventional endoscopy | 1036496 images from 84424 patients | Sensitivity (0.942) similar to the expert (0.945), superior to the competent (0.858) and the trainee (0.722) endoscopist |
Ikenoyama et al[29], 2021 | Detect EGC | CNN (SSD) | WLI, NBI chromoendoscopy | Training: 13584 images; Test: 2940 images. | Sensitivity 58.4%, specificity 87.3%, PPV 26.0%, NPV 96.5% |
Classification of gastric neoplasms | |||||
Sun et al[30], 2018 | Classify ulcers | DCNN | Conventional endoscopy | 854 images | Accuracy 86.6%, sensitivity 90.8%, specificity 83.5% |
Lee et al[31], 2019 | Detect EGC and benign ulcer | CNN (ResNet50, Inception-v3, VGG16) | Conventional endoscopy | Training: 717 images; Test: 70 images | AUC 0.95, 0.97, and 0.85 in Inception, ResNet50, and VGG16 |
Cho et al[32], 2019 | Detect AGC, EGC, dysplasia | CNN (Inception-v4, ResNet152, Inception-Resnet-v2) | Conventional endoscopy | 5217 images from 1469 patients | Gastric cancer: accuracy 81.9%, AUC 0.877; Gastric neoplasm: accuracy 85.5%, AUC 0.927 |
Kim et al[33], 2020 | Classify gastric mesenchymal tumors | CNN | Endoscopic ultrasonography | Training: 905 images; Test: 212 images. | Accuracy 79.2%, sensitivity 83.0%. specificity 75.5% |
Prediction of invasion depth | |||||
Kubota et al[39], 2012 | Predict invasion depth | Back propagation | Conventional endoscopy | Training: 800 images; Test: 90 images | Accuracy 77.9%, 29.1%, 51.0% and 55.3% in T1, T2, T3, and T4 stage; Accuracy 68.9% and 63.6% in T1a and T1b stage |
Zhu et al[40], 2019 | Predict invasion depth | CNN (ResNet50) | Conventional endoscopy | Training: 790 images; Test: 203 images | AUC 0.94, overall accuracy 89.2%, sensitivity 76.5%, specificity 95.6% |
Yoon et al[41], 2019 | Detect cancer, and predict invasion depth | CNN (VGG16, Grad-CAM) | Conventional endoscopy | 11539 images | Detection AUC 0.981, depth prediction AUC 0.851 (undifferentiated type histology with a lower accuracy) |
Cho et al[43], 2020 | Predict invasion depth | CNN (Inception-ResNet-v2, DenseNet-161) | Conventional endoscopy | Training: 2899 images, test: 206 images | Internal validation: accuracy 84.1%, AUC 0.887; External validation: accuracy 77.3%, AUC 0.887 |
Nagao et al[44], 2020 | Predict invasion depth | CNN (ResNet50) | WLI, NBI, indigo-carmine | 16557 images from 1084 cases of gastric cancer | WLI: AUC 0.9590, sensitivity 89.2%, specificity 98.7%, accuracy 94.4%, PPV 98.3%, NPV 91.7%; NBI: AUC 0.9048; Indigo-carmine: AUC 0.9191 |
Blind-spot monitoring | |||||
Wu et al[48], 2019 | Detect blind spot | DCNN | Conventional endoscopy | 34513 images | Accuracy of detecting blind spot: 90.0%; Blind spot rate: 5.9% |
Wu et al[49], 2019 | Detect EGC and blind spot | DCNN | Conventional endoscopy | 24549 images | Accuracy 92.5%, sensitivity 94.0%, specificity 91.0%, PPV 91.3%, NPV 93.8% |
Chen et al[50], 2020 | Detect blind spot | DCNN | Conventional endoscopy, U-TOE | Live video of 437 patients | Blind spot rate with AI: Sedated C-EGD, 3.4%; unsedated U-TOE, 21.8%; unsedated C- EGD, 31.2% |
- Citation: Kim JH, Nam SJ, Park SC. Usefulness of artificial intelligence in gastric neoplasms. World J Gastroenterol 2021; 27(24): 3543-3555
- URL: https://www.wjgnet.com/1007-9327/full/v27/i24/3543.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i24.3543