Copyright
        ©The Author(s) 2020.
    
    
        World J Gastroenterol. Jun 7, 2020; 26(21): 2702-2714
Published online Jun 7, 2020. doi: 10.3748/wjg.v26.i21.2702
Published online Jun 7, 2020. doi: 10.3748/wjg.v26.i21.2702
            Table 1 Reported REG expressions in inflammatory bowel disease patients
        
    | Ref. | REGs | Samples (size) | Relevant findings | 
| Lawrance et al[38], 2001 | REG1α/1β/3α | CD (6) UC (6) control (6) | Increased intestinal REG1α/1β/3α in IBD detected by microarray | 
| Shinozaki et al[39], 2001 | REG1α | CD (9) UC (21) control (5 non-IBD, 6 normal) | Increased intestinal REG1α in IBD detected by RT-PCR and ISH | 
| Desjeux et al[40], 2002 | REG3α | CD (124) normal control (54) | Increased serum REG3α in active CD detected by ELISA | 
| Dieckgraefe et al[41], 2002 | REG1α/1β/3γ | CD (3) UC (5) control (4) | Increased intestinal REG1α/1β/3γ in IBD detected by microarray and IHC | 
| Ogawa et al[12], 2003 | REG3α | CD (20) UC (23) control (18) | Increased intestinal REG3α in IBD detected by ISH and Northern blot | 
| Kämäräinen et al[42], 2003 | REG4 | CD (N/A) UC (N/A) | By ISH and IHC, REG4 constitutively expressed in neuroendocrine cells, and upregulated in inflamed epithelial cells | 
| Gironella et al[43], 2005 | REG3α | IBD (171) control (14 non-IBD, 29 normal) | Increased serum REG3α correlated with IBD severity detected by ELISA. Higher REG3α in CD than UC. REG3α localized to colonic Paneth cells | 
| Wu et al[44], 2007 | REG1β/REG3α | CD (9) UC (5) control (4) | Increased intestinal REG1β in CD and REG3α in CD and UC detected by microarray | 
| Nanakin et al[45], 2007 | REG4 | UC (22) normal control (5) | Increased intestinal REG4 in UC detected by RT-PCR, ISH and IHC | 
| Sekikawa et al[46], 2010 | REG1α | UC (60) control (10) | Increased intestinal REG1α in UC detected by RT-PCR and IHC | 
| Tanaka et al[47], 2011 | REG1α | UC (31) control (5) | Increased intestinal REG1α in UC detected by IHC | 
| Granlund et al[14], 2011 | REG1α/1β/3α/4 | CD/control (12/21) UC/control (32/34) | Increased intestinal REG1α/1β/3α/4 in IBD detected by microarray. Different cellular localizations of REG1α and REG4 detected by IHC | 
| van Beelen Granlund et al[48], 2013 | REG1α/1β/3α/4 | CD (N/A) UC (N/A) | By ISH, REG1α/1β/3α localized to Paneth cells in the crypt base, REG4 localized to enteroendocrine cells towards the luminal face | 
| Planell et al[49], 2013 | REG1α/4 | Microarray: UC (15 active/8 remissive), Non-IBD (13); RT-PCR: UC (8 active/12 remissive), non-IBD (10) | Comparably increased intestinal REG4 in active and remissive UC, and significantly increased REG1α in active UC but not in remissive UC, detected by microarray and RT-PCR | 
| Marafini et al[50], 2014 | REG3α | CD (72) UC (22) | Infliximab treatment decreased the high serum REG3α in CD and UC | 
| Nunes et al[51], 2014 | REG3α | CD (66) UC (74) | Increased serum REG3α serum in active CD but not UC detected by ELISA | 
| Tsuchida et al[52], 2017 | REG1α/1β/3α/4 | CD (49) UC (39) control (44) | Increased intestinal REG1α/1β/4 in CD, and REG4 in UC detected by RT-PCR | 
            Table 2 Effects of genetically modified REG/Reg genes on the composition of intestinal bacterial microbiota in mice
        
    | Class | Order | Family | Genera | 
| Actinobacteria | Bifidobacteriales | Bifidobacteriaceae | Bifidobacterium ↑2 | 
| Coriobacteriales | Coriobacteriaceae ↓1↓3 | ||
| Eggerthellales | Eggerthellaceae | Enterorhabdus ↓3 | |
| Alphaproteobacteria | Caulobacterales | Caulobacteraceae | Brevundimonas ↓3 | 
| Rhizobiales | Bartonellaceae | Bartonella ↑3 | |
| Bacilli | Bacillales | Bacillaceae | Oceanobacillus ↑3 | 
| Staphylococcaceae | Staphylococcus ↓2 | ||
| Lactococcus ↑3 | |||
| N/A | Gemella ↑3 | ||
| Lactobacillales ↑3 | Lactobacillaceae −1 | Lactobacillus ↓2↑3−4↓5 | |
| Enterococcaceae | Enterococcus ↑2↑3 | ||
| Aerococcaceae | Facklamia ↓3 | ||
| Carnobacteriaceae | Carnobacterium ↑3 | ||
| Bacteroidia | Bacteroidales ↑1↑3↓5 | Prevotellaceae ↓1↑3 | Prevotella ↓1↑2↑3 | 
| Rikenellaceae −1 | |||
| Porphyromonadaceae ↓1↓5 | Parabacteroides ↓1↑3↑5 | ||
| Barnesiella ↓1 | |||
| Bacteroidaceae ↓1 | Bacteroides ↓1−2−3−4↑5 | ||
| Betaproteobacteria | Burkholderiales | Sutterellaceae ↓1 | Parasutterella ↑1↓3 | 
| Clostridia ↑1 | Clostridiales ↓5 | Lachnospiraceae ↑1↑3−5 | Roseburia ↑3 | 
| Ruminococcaceae −2↑3−5 | Faecalibacterium ↑3 | ||
| Clostridiaceae | Clostridium ↑2↑3(XI Cluster) ↓5(XIVa Cluster) ↑5 | ||
| Candidatus Arthromitus ↑3 | |||
| Candidatus Savagella ↑4 | |||
| Eubacteriaceae | Eubacterium (rectale) ↑4 | ||
| Oscillospiraceae | Oscillibacter ↑1 | ||
| Peptococcaceae ↑3 | |||
| Delta Proteobacteria | Desulfovibrionales ↑1 | Desulfovibrionaceae −5 | Lawsonia −5 | 
| Desulfovibrio −5 | |||
| Epsilonproteobacteria | Campylobacterales | Helicobacteraceae | Helicobacter ↑2↑3 | 
| Erysipelotrichia | Erysipelotrichales | Erysipelotrichaceae ↑3↑5 | Turicibacter ↑3 | 
| Allobaculum −3↓5 | |||
| Gammaproteobacteria | Enterobacterales | Enterobacteriaceae ↑3 | Escherichia ↓2 | 
| Enterobacter ↓1 | |||
| Morganellaceae | Proteus ↓2 | ||
| Pseudomonadales | Moraxellaceae | Psychrobacter ↑3 | |
| Acinetobacter ↑3 | |||
| Xanthomonadales | Xanthomonadaceae | Stenotrophomonas ↑3 | |
| Negativicutes | Acidaminococcales | Acidaminococcaceae | Phascolarctobacterium ↑3 | 
| Veillonellales | Veillonellaceae ↑3 | ||
| Verrucomicrobiae | Verrucomicrobiales | Akkermansiaceae | Akkermansia ↓1↑3↑5 | 
| Verrucomicrobiaceae ↓1 | 
- Citation: Edwards JA, Tan N, Toussaint N, Ou P, Mueller C, Stanek A, Zinsou V, Roudnitsky S, Sagal M, Dresner L, Schwartzman A, Huan C. Role of regenerating islet-derived proteins in inflammatory bowel disease. World J Gastroenterol 2020; 26(21): 2702-2714
 - URL: https://www.wjgnet.com/1007-9327/full/v26/i21/2702.htm
 - DOI: https://dx.doi.org/10.3748/wjg.v26.i21.2702
 
