Editorial
Copyright ©The Author(s) 2019.
World J Gastroenterol. Aug 14, 2019; 25(30): 4043-4050
Published online Aug 14, 2019. doi: 10.3748/wjg.v25.i30.4043
Table 1 Summary of the main volatile organic compounds found in the exhaled breath of patients with liver cirrhosis
Compounds and moleculesMetabolic disturbances
Nitrogen derivatives
Ammonia[14]Altered urea cycle
Trimethylamine[29]Reduced hepatic catabolism of trimethylamine and/or increased degradation and absorption of dietary phosphatidylcholine and choline mediated by altered intestinal microbiome
Ketones[16]Increased insulin resistance, hepatic glycogen exhaustion, hepatic gluconeogenesis impairment
Sulfur derivatives[8]Incomplete metabolism of sulfur-containing amino acids in the transamination pathway
Dimethylsulfide[12]Main responsible for fetor hepaticus
Alkanes, alkenes, terpenes and aliphatic acids[29]Lipid peroxidation mediated by oxygen radical produced by hepatic CYP activity
Ethane and pentane[30]More typical of alcohol induced liver injury
Limonene[13]Impaired biotransformation by CYP2C (partially dependent on dietary intake of citrus fruits and vegetable)
Acetic and propionic acid[9]Reduced hepatic metabolism of short chain fatty acids produced by gut microbiome
Alcohols
Methanol[22]Pectin degradation; its levels are partially dependent on dietary intake of fruits and on a variable role of intestinal microbiome
Ethanol[31]More typical of NAFLD, even in complete absence of alcohol consumption; possible role of intestinal microbiome in the production of ethanol in obese patients
Table 2 Discriminative capacities of exhaled breath analysis for clinically relevant applications in hepatology
Study (year)Methods of breath analysisPopulationDiscriminative capacities
LC diagnosis
Van den Velde et al[17] (2008)GC-MS52 LC vs 50 HCSens 100%, spec 70%
Netzer et al[18] (2009)IMR-MS37 LC vs 35 HCAUC 0.84
Millonig et al[19] (2010)IMR-MS37 LC vs 25 HCAUC 0.88
Dadamio et al[20] (2012)GC-MS35 LC vs 49 HCSens 82%-88%, spec 96%-100%
Khalid et al[21] (2013)GC-MS34 LC vs 7 HCSens 100%, spec 86%
Morisco et al[22] (2013)PTR-MS12 LC vs 14 HCAUC 0.88
Fernández Del Río et al[23] (2015)PTR-MS31 LC vs 30 HCSens 97%, spec 70%, AUC 0.95
Pijls et al[24] (2016)GC-MS34 LC vs 87 CLDSens 83%, spec 87%, AUC 0.90
De Vincentis et al[25] (2016)e-nosea65 LC vs 39 CLDSens 88%, spec 69%
Liver function
Morisco et al[22] (2013)PTR-MS6 CPC B-C vs 6 CPC AAUC 0.92
De Vincentis et al[25] (2016)e-nosea48 CPC A-B vs 17 CPC CSens 88%, spec 64%
De Vincentis et al[26] (2017)e-nosea89 LCaHR 2.8, 95%CI 1.1-7 for mortality and aHR 2.2, 95%CI 1.1-4.2, for hospitalization (analysis adjusted for all potential confounder including CPC and MELD)
NAFLD—NASH
Netzer et al[18] (2009)IMR-MS34 NAFLD vs 35 HCAUC 0.90
Netzer et al[18] (2009)IMR-MS34 NAFLD vs 20 AFLDAUC 0.92
Millonig et al[19] (2010)IMR-MS34 NAFLD vs 35 HCAUC 0.96
Millonig et al[19] (2010)IMR-MS34 NAFLD vs 20 AFLDAUC 0.95
Verdam et al[28] (2013)GC-MS39 NASH vs 26 HCAUC 0.77
Hepatic encephalopathy
Khalid et al[21] (2013)GC-MS11 LC with HE vs 23 LCSens 91%, spec 87%, AUC 88%
Arasaradnam et al[27] (2016)e-nose+22 LC with HE vs 20 HCSens 88%, spec 73%, AUC 0.84
Arasaradnam et al[27] (2016)e-nose+13 LC with overt HE vs 9 with covert HCSens 79%, spec 50%, AUC 0.71
HCC
Qin et al[32] (2010)GC-MS30 HCC vs 36 HCSens 83%, spec 92%, AUC 0.75
Qin et al[32] (2010)GC-MS30 HCC vs 27 LCSens 70%, spec 70%, AUC 0.93