Topic Highlight
Copyright ©2010 Baishideng Publishing Group Co.
World J Gastroenterol. Dec 21, 2010; 16(47): 5925-5935
Published online Dec 21, 2010. doi: 10.3748/wjg.v16.i47.5925
Table 1 Ecto-F1-ATPase subunit detection in various cell types
Cells/tissuesSubunitsMethodsRef.
K562, A549, RajiβB, FC, S[38]
HUVECα, β, IF1B, FC, CM[35,39,40]
HepG2, IHH, Human hepatocytesα, βSPR, FC, CM[30]
3T3-L1α, βB, CM[41]
JurkatβRP + MS[42]
Rat hepatocytesα, β, δ, γ, b, d, e, F6, OSCPCM[37]
HaCat, Human skinβRP + MS, CM[43]
Daudi, RPMI-8226, U937, SK-NEP, G401, G402α and/or βFC[31]
Awells, ST-Emo, HeLa, fibroblasts, Rma-Sα, βB, CM, FC[33]
Rat tonsilsβPM[44]
Neurons, neuroblastoma, astrocytomaαB, CM[45]
Osteosarcomaα, β, dCM[36]
Table 2 Ligands and roles of Ecto-F1-ATPase
Cells/tissuesLigandsProposed rolesRef.
K562, A549, Raji?NK/LAK-mediated tumor cell lysis[38]
HUVECAngiostatin HDL/apoA-ICell survival through ATP production[40,60,66]
FC6Cell survival through purinergic receptor activation
Control of blood pressure
HepatocytesHDL/apoA-IHDL endocytosis[30]
3T3-L1, HaCat?Cell survival[41,43]
Tumor cellsVγ9/Vδ2 TCR, apoA-I, MHC-ITumor cell recognition by Vγ9/Vδ2 T cells/presentation of phosphoantigens[31,33,46,67]
Tonsils (mouse)EnterostatinFood intake regulation[44]
NeuronsAPP, Amyloid β-peptideSynaptic plasticity regulation[45]